

Compact Textbooks in Mathematics

- Greek 1-6, 9, 38, 42, 45, 57, 58 - intelligibility of 6 - medieval 38,76 - pedagogy in 2 - philosophies of 85-92 - proof in 1,95,99-101 - rigor in 6,45 - simultaneous discovery in 19 - social factors, Greece 1 - truth of 63,89 Matrices 9, 64, 71, 95 Measure - Lebesgue 34 Mengenlehre see Set theory Méré, Chevalier de (1607-1684) 27, 28, 30 Metamathematics 87 Module(s) 5 Moments 37 - in Newton's calculus 41 Monge, Gaspard (1746-1818) 22 Motion, projectile 19 Multiplication - alternative 70 - commutativity of 69-71,85 - nonassociative 70 N Nasir-Eddin al-Tusi (1201-1274) 59 Newton, Isaac (1642-1727) 3, 21, 37, 39-41, 43, 44, 68, 95, 97 Notation - in algebra 95 - in arithmetic 96 - in calculus 40, 43, 95 - symbolic 11,43 - value of 43 Number theory v, 16 - algebraic v, 24 - analytic 24 - geometrical 24 Number(s) - algebraic 51,54,79 - Cayley 70 - complex v, 13-17, 51, 63, 67-71, 79, 85, 96 - hypercomplex 71 - ideal complex 53 - imaginary 15, 16 - in Babylonia 67 - in China 67 - in India 67 - in Islam 67	- irrational v, 80,85 - natural 5 - negative $10,11,22,85$ - real 5,16,63,77,79,80,90 - transcendental 79,80,85 0 Octonions 70,71,96 Ore, Oysten (1899-1968) 10, 27 Oresme, Nicole (c. 1320-1382) 19 P Pacioli, Luca (c. 1445-1517) 27, 28 Pappus of Alexandria (fl. 300-350) 21 - problem of 20,21 Paradox(es) - in set theory $81,86,87$ - Russell's 81 - Zeno's 1,75,78 Parmenides of Elea (c. 515 B.C.-c. 450 B.C.) 1,75 Pascal, Blaise (1623-1662) 27, 28, 30 Pasch, Moritz (1843-1930) 4 Peano, Giuseppe (1858-1932) 5, 86, 97 Pederson, Kirsti (1941-) 95 Permutations and combinations 31 Perspective, in art 38 Physics - Newtonian 23 Playfair, John (1748-1819) 59 Plimpton 32249 Poincaré, Jules Henri (1854-1912) 33, 69, 80, 81, 86, 87, 99 Poisson, Siméon-Denis (1781- 1840) 33 Poncelet, Jean Victor (1788-1867) 3 Posidonius (c. 135 B.C.-c. 51 B.C.) 59 Postulate(s) see also Axioms - Euclid's fifth v, 2,4,57-63 - in euclidean geometry 2,4,57-63 - in noneuclidean geometry 60-63 - parallel 58,60 - parallel see Postulate(s), Euclid's fifth Prime(s) - gaussian 52 Primitive terms 4 Probability 27-34 - applications 30-32 - axiomatization 34 - conditional 34	- definition of 27-33 - independence in 34 - origins of 27,28 - philosophy of 33 - significance of 34 - spaces 33,34 - texts in 29-33 - theories of 33 Problem - Dice 27,30 - Division 27-30 - of Points 27-30 Proclus (c. 410-485) 58,59 Proof theory 87 Proof(s) - as a social process 100 - by contradiction 89 - computer-aided 99-101 - constructive 89 - degrees of 91 - discovery of 100 - finitistic 89 - inductive 101 - nonconstructive $80,90,91$ - quasi-empirical 100,101 Pythagoras of Samos (c. 560 B.C. -c. 480 B.C.) 49 Pythagoreans 2 Quaternions 63,69-71,85 R Rate of change, instantaneous 85 Reciprocity - biquadratic 52 - cubic 52 - laws of 52 - quadratic 52 Renaissance 37,38 - mathematics 10 Rényi, Alfréd (1921-1970) 28, 33 Rhetoric, in Greece 1 Riemann, Georg Friedrich Bernhard (1826-1866) 16, 61, 62, 64, 98, 99 Ring(s) 5, 54, 55 - commutative 55 - normed 5 Robinson, Abraham (1918-1974) 45 Ruffini, Paolo (1765-1822) 13 Russell, Bertrand (1872-1970) 86, 87

96 ＇s8 и！шорәә．！－	－991）әр әu！ouи	0ε
z6＇r до suoplepunó－		
		LL（6L91－8851）sewoч1＇ssaq9
9 บ！Кәлоз！${ }^{\text {¢ }}$－		
		รэฺешәчреш
＾ıппиәว วas и！Кıпииәว－	ts＇¢¢（£681	06－98＇ 28 ＇18＇5L＇z9
t9 jo suople？！ 1 de－	8	乙6（－＜z6）иәqпәу＇чsıəн
	גдурәиоиу	$66^{\prime} 98$
8ε sıe әчч рие	t¢（ $8861-$ E061）	
68 पrleypue－	（1）	96^{\prime}＇58＇01－89＇91（5981－5081）
ธग！решәчъеш		иемоу шеп！！м＇оои！иен
£（zz6l－958）		
	＇иІə＞	66 （－8861）Биебном＇иәуен
16 （－LE61）！nג＇u！uew		
	 	＇91（8961－5981）sanb＞er＇рхешерен
N		
	$\boldsymbol{\lambda}$	
L8＇98 ws！		
	ε sұue！̣eлu｜	коодч
		£l əqerıos
	｜6－68＇98 mstuouphnu｜	घ1 ！ешıои
58 ＇08（6661－Cs81）	†¢ əпธsaqə7－	عl sloleg
	0\％иопрекбәии	66 әdג！！
7		
L6＇s6＇L＜＇st ¢ ¢	06 до иопрепрела－	
－0t＇68＇દ＇＇Iて＇L1＇U（9LL－9t9）	Et Ot（s）erinarul	
	ss गupepenb	＇02＇89（0281－9081）
$65^{\prime \prime} \mathrm{LS}$＇$\varepsilon$（ （E¢81－ZSLL）		1 ичоо＇รэле．
әبеш－шә！	is xəiduor－	L6＇L＇ ＇$^{\prime}$（ $\left.\angle 281-6081\right)$
	ss＇ts गִenqab｜e	zz＇6l sude．t
06 кшооочтидо－	เәбауи	
sıaqum	$6 \angle$ गq¢erunosun	
	$6 L$ əq¢äunuapuou	
		غг＇દ गฺрұчикs－
z8 әп！ุепишог－	64＇8L P｜q̧uno	г9＇¢ чеฺииешә！－
08 чоп̣еп｜гวиез－		て9＇દ 天 天！
（5）MP7		sayermisod azs ui sele｜misod
ャ¢＇ıє иәрои－		
		9 ＇s uelsan6ıesəpuou
		ऽ иеәрәш！члеиои
89 ＇\＆－－z（Lz81－6tLl）	LL＇SL｜epupiod－	
	L－SL İnıJe－	8 ｜еuo！suәш！p－u－
	St sentlenbau	jo（s） apow－$^{\text {－}}$
		ε и！sрочәәш－
09＇sl（LLL－8ZL）	＇6 รэ！̣ешәчъеш uе！pu｜	
 		七て＇＇દz exqәб！e ot syu！｜
D＇Ez＇sl＇gl＇zા＇て（દા81－9¢દ）		
s！noา чdәsor＇әбuexбеา	ss－Es＇Is＇s（s）	
zて＇6l（とt8l－99L）		s 2ีuy－

Hardy Grant
Israel Kleiner

Turning Points in the History of Mathematics

20th v, 5, 6, 24, 29, 31, 33, 34, 49,

68,71, 86, 89, 99, 100
Chebyshev, Pafnuty Lvovich
(1821-1894) 33
(1821-1894) 33
Circle, squaring of 80,85
Circle, squaring of 80,85
Clairaut, Alexis-Claude (1713-1765)
Clifford, William Kingdon
(1845-1879) 71
Complex function theory 17
Computer(s)

- mathematical use of 99-10
- proofs using 99-10

Congruences 16,95
Conic sections 19,22,
Conjecture

- Bieberbach 99
- Feit-Thompson 99
- four-color 9
- Kepler 99
- Poincaré 99

Convergence, of series 44

- tests for 90

Coordinates 19, 22

- polar 23

Correspondence, 1-to-1 76-79
Coxeter, Donald (1907-2003) 6
Courts of law, in Greece 1

- algebraic 22
- algebraic 22
- sketching of 22
- space-filling 85
- transcendental 22

D

D'Alembert, Jean le Rond
(1717-1783) 15,86
David, Florence Nightingale

Davis, Philip (1923-) 92
De Millo, Richard (1947-)
De Milio, Richard (1947-) 86
De Moivre, Abraham (1667-1754) 30,
${ }_{\text {De Morgan Augustus }}^{32}$
De Morgan, Augus
$(1806-1871) 71$
De Sua, Frank (1921-2013) 89
Dedekind, Julius Wilhelm Richard
(1831-1916) 2, 5, 45, 54, 55,79,90
Del Ferro, Scipione (1465-1526) 10 Democracy, in Greece 1

BC) 7
Derivative 40,43
Desargues, , irard (1591-1661)
Desargues, Girard (1591-1661) 3 ,
1650) 11, 15, 19-23,38,39,77

Differential(s) $37,42,45$
Differential(s) $37,42,4$
Differentiation 40
Dimension(s), in geometry 3,24 , 96,97

- fourth 96

Diophantus of Alexandria
(fl. c. 250) 9, 49, 50, 67
Dirichlet, Gustav Peter Lejeune
89) $7,53,98$

Domain(s)

- dedekind 55
- quadratic 54
- unique factorization 51-55 Duality, principle of 3
E
e, transcendental character of 80 Edwards, Charles (1937-) 95 Egyptian mathematics 9 Einstein, Albert (1879-1955) 64 Elements see Euclid Equations
- approximate
- cubic 10,11
- degree >4 11-13
differential 37,90
- diophantine $17,49,51$
- integral 37
- irreducible 15
- polynomial 90,9
- polynomial 90,10
- quadratic 9,10
- quartic 10,11
- quintic 12,13
resolvent 12,13
solution by radicals $10-15,37,67$
solution by radicals $10-15,37,67$
solution of 9-15, 37, 63, 67,68
systems of 9
Euclid (fl. c. 295 B.C.) 1-4, 6, 9, 57-63
Euler, Leonhard (1707-1783) 11, 15,
$23,43-45,51,53,80,86,97$ Evanescent quantities 37 Eves, Howard (1911-2004) 34,89 Excluded middle, law of 89 Exhaustion, method of 38 Experimental mathematics 100, 10

F

Fermat, Pierre de (1601-1665) 19, Fermat's, 21, 28, 38, $39,41,49-51,53$ | 54,99 |
| :---: |
| Fijld (5) 5 54 |

Field(s) 54,55

- algebraic number 5
- archimedean
- skew 69

Fior (or Fiore), Antonio Maria (fl. first
half of 16 th century) 10
Formalism $86-88,90$, 9
Forms, quadratic 54
Fourier, Jean Baptiste Joseph
$-(1768-1830)$

- series 98

Frege, Friedrich Ludwig Gottlob
(1848-1925) 86
Function(s) 40,43

- concept of 97-99
- continuous 98
convergence of series of 97
- differentiable 98
- domain of definition 45
tions 98
- integrable 98
- integrable 98
nowhere differentiable 85,86 ,
98
- objective reality of 86
- pathological $86,97-99$
- semiemann-contintegrabus 9898

G
Galilei, Galileo (1564-1642) 19, 28 , 38,64,76-78
Galois, Evariste (1811-1832) 12, 13, 67 Gauss, Carl Friedrich (1777-1855) 4, 7, 15-17, 33, 49, 51-53, 60, 61, 67,
$68,77,90,95$
Geometry

- algebraic 3,24
- analytic see Analytic geometry
and the physical world 57,64,
- and the phy
- astral 60
- complex numbers in 17
consistency of 3, 61-63
desarguesian 5
differential $3,24,62$
elliptic 3,62

	1 －t9 $28-6866-1-866 / 100101010$
（yoogə）1－t98を－686t－1－886 N8S	$t-\varepsilon 98 \varepsilon-6866-1-866 \mathrm{~N}$
SSt－96ZZ NSSI	895t－96zて

[^0]| 86－96＇06

 $86^{\prime} 66^{\prime} 09^{\prime}$＇6＇Is | ६દ（0061－ZZ8）
 1ع sıəqunu |
 |
| :---: | :---: | :---: |
| | 0¢（6SLl－L891）｜sne｜ou！ | 56 |
| $86^{\prime} \angle 6$＇56＇58＇91＇49 | | |
| | $\varepsilon_{\text {¢ } \dagger \text {＇¢ }}$ | |
| | ＇0¢（soll－ts9））（sanbere）qoyer | |
| | $0 \varepsilon(z 81-00 L 1)$ P！uea－ | |
| L9 416 － | ！！nour | ャて＇દ วәиедчиб！s－ |
| | | |
| 65 \％ 3 \％ 41 | | ＇zz uәрош＇s＾киеә－ |
| 1 כ¢ 975 | ＋（266l | ž диәшлоорләр－ |
| | | |
| 96^{\prime}＇56＇L＇0＜ | | L¢ 1еə」－ |
| | | St prepuepsuou－ |
| $8 \varepsilon(4+91-8651$ ） | | Ľ хәлduos－ |
| е．пииәлвиоя＇пә！｜елет | | |
| | IS＇OS＇Ll uollenbz ；әчヤrg | |
| | | |
| ＜z＇sl－દı＇u | | 0＜ui uounnonar－ |
| ＇OL（9LSI－LOSI）oure｜oulo＇ouep．re） | | 61 әวuess！leuzy－ |
| 96 ＇98＇58 | | $\angle 9$ јо su｜¢ио－ |
| | 8 | 58 эппреппшшозиои－ |
| L6 до ио！ฺегبоб！－ | | |
| | | ๖て ıеәu！ |
| | | 6 गִwe｜s｜ |
| | 88 уo ssauzapdumou！－ | 6 ue！pul |
| | | K 2 dnou |
| | | 6 צәәө |
| | L－uәрои－ | $06^{\prime 2}$ |
| 16－68＇08（9961－1881） | 9 ＇ε－1 \％up！uue－ | ＇Ll－st jo шәлоәчıleruamepung |
| | | K גопрахә |
| Iz（9661－9061） | ¢9 до чппи－ | LL－69 uois！up |
| L＇9 ！yequnos | s s，ourad－ | ＜ fo suolsuzu！ |
| oz（－0t66）учәнн＇sog | 68 68 ¢о | L9｜e］！ 5 Sp｜ |
| | २9 јо әЈиәриәdəри！ | 6 әэәи！ |
| 89＇91 | s－¢ s，मəवा！ | L＇0＜天nıleposse |
| ＇tL（ZISI－9ZSI）｜ə．jey＇！｜Iquog | 8L＇غ9－＜L＇t－L s．pp！ | L＇89 penysqe－ |
| St（8t81－184）preurag＇oueziog | z9 to 欠̧uars！ 5 uoz－ | |
| | | s uopzensqy |
| 09 | | |
| ＇61（9s81－SLLI）（6ueநy｜oм）seyte」－ | 8ε wsimoit | |
| lexiog | 61 צәәф－ | V |
| 16 （8861－8866） ） | 88 亿wouonts | |
| | | |
| K suolurıenb！g | z8＇08＇82 әпبuysuen－ | |
| | цє ⿺𠃊ш！⿰习习－ | （1d） 4 |
| | गпраич！ | |
| | $96^{\prime} 18$＇sL（＇כ＇ | ｜Oquks |

Preface

The development of mathematics has not followed a smooth or continuous curve, lthough in hindsight we may think so. As the mathematician and historian of mathematics Eric Temple Bell (1883-1960) said: "Nothing is easier ... than to fit a deceptively smooth curve to the discontinuities of mathematical invention" [1, p. viii]. In fact, there have been dramatic insights and breakthroughs in mathematics throughout its history, as well as what seemed for a time to be insurmountable stumbling blocks-both leading to major shifts in the subject. And then-for able stumbling blocks-both leading to major shifts in the subject. And then-for
the most part-there have been relatively "routine" developments, from whose mportance we do not wish to detract.
Here are two "nonroutine" examples.
a. The invention (discovery?) of noneuclidean geometry-a breakthrough which was about two millennia in the making (ca $300 \mathrm{BC}-$ ca 1830), and which culminated in the resolution of "the problem of the fifth postulate." This brought about a reevaluation of the nature of geometry and its relationship to the physical world and to philosophy, as well as a reconsideration of the nature of axiomatic systems. See $>$ Chapter 7 .
b. The introduction, around the mid-eighteenth century, of "foreign objects", such as irrational and complex numbers, into number theory, to be followed in the late nineteenth century by the founding of a new subject-algebraic number theory. These developments paved the way for splendid achievements of modern mathematics, including, to take a familiar example, the resolution of the problem, stated in the 1630 s, concerning the unsolvability in integers of Fermat's equation $x^{n}+y^{n}=z^{n}, n>2$. The proof of unsolvability, given by Andrew Wiles in 1994, required most of the grand ideas which number theory had evolved during the twentieth century. See $>$ Chapter 6 and [4].

We aim in this book to discuss some of these major turning points-transitions, shifts, breakthroughs, discontinuities, revolutions (if you will)-in the history of mathematics, ranging from ancient Greece to the present [2,3]. Among those which we consider are the rise of the axiomatic method (\checkmark Chapter 1), the wedding of alge bra and geometry (\triangleright Chapter 4), the taming of the infinitely small and the infinitely large (Chapter 5), the passage from algebra to algebras (\downarrow Chapter 8), and the revolutions resulting in the late nineteenth and early twentieth centuries from Cantor's creation of transfinite set theory (\downarrow Chapters 9 and 10). The historical origin of each urning point is discussed, as well as some of the resulting mathematics.

The above examples, and others discussed in this book, highlight the great drama inherent in the evolution of mathematics. Teachers of this grand subject will benefit from reflecting on this important aspect of it, focusing on the big ideas in its development-though not, of course, to the neglect of "routine" mathematics. They should pass on to students-at some point in their studies-at least the spirit, if not always the content, of these ideas. In particular, students should be made aware that not every fact, technique, idea, or theory is as important, and should receive as much emphasis, as every other. If this thought is not conveyed to them, our teaching will do justice neither to the students nor to the subject.

-sau!̣ poos furu

turusssass s!̣t Ay!̣s

хәрии әл! зиәчәлдшоэ в веч уоо

 ('s66L U! pzus!|gnd 'onos! φ ग.en

 (Iz6) 8St-ESt - !u!e

би! реәу дәчдмп

(Z261) uolsog

Contents

Axiomatics-Euclid's and Hilbert's: From Material to Formal 1
. 1 Euclid's Elements
1.2 Hilbert's Foundations of Geometry 3
The Modern Axiomatic Method 5
Ancient vs. Modern AxiomaticsProblems and Projects.7
References.8
Solution by Radicals of the Cubic: From Equations to Groups and from Real to Complex Numbers and from Real to Complex Numbers 9
2.1 Introduction ${ }^{9}$
Cubic and Quartic Equations 10
Beyond the Quartic: Lagrang 13
Complex Numbers: Birth 13
Growth 15
16
Maturity.................
Problems and Projects 17
References.18
3 Analytic Geometry: From the Marriage of Two Fields to the Birth of a Third 19
3.1 Introduction...
19
3.2 Descartes19
21
. 4 Descartes' and Fermat's Works from a Modern Perspective 22
3.5 The Significance of Analytic Geometry 23
Problems and Projects 24
25
References 25
Probability: From Games of Chance to an Abstract Theory 27
27
The Pascal-Fermat Correspondence 29
Huygens: The First Book on Probability 30
De Moivre's The Doctrine of Chances
32
Laplace's Théorie Analytique des Probabilités
33
4.6 Philosophy of Probability 33
4.7 Probability as an Axiomatic Theory. 34
Problems and Projects 35
References.35

References

The methods of this field are thus for the most part akin to those of the scientist: experimenting much of it via the computer and its increasingly sophisticated tools, formulating hypotheses and testing these by further experimentation. These various activities-short of proof-are pub nd forle following the usual reviewing process. Not that proof is to be abro b but is elsewhere. As Borwein, who calls himself a "computer-assisted fallibilist", asserts [2, p. 35]:
» In my view, it is now both necessary and possible to admit quasi-empirical inductive methods fully into mathematical argument. In doing so we will enrich mathematics.... Mathematics is primarily about secure knowledge, not proof.... Proofs are often out of reach-but understanding, even certainty, is not.

As an illustration Borwein gives the following example [2, p. 37]:
" Given an interesting identity buried in a long and complicated paper on an unfamiliar subject, which would give you more confidence in its correctness: staring at the proof, or confirming computationally that it is correct to 10,000 decimal places? Here is such a formula [which arose in quantum field theory]:

$$
\begin{aligned}
& {\left[\frac{24}{7 \sqrt{7}}\right] \int_{\frac{5}{3}}^{\frac{\pi}{3}} \log |(\tan t+\sqrt{7}) /(\tan t-\sqrt{7})| d t=} \\
& \sum_{\mathrm{n}=0}^{\mathrm{n}=0}\left[\frac{1}{(7 \mathrm{n}+1)^{2}}+\frac{1}{(7 \mathrm{n}+2)^{2}}+\frac{1}{(7 \mathrm{n}+3)^{2}}+\frac{1}{(7 \mathrm{n}+4)^{2}}+\frac{1}{(7 \mathrm{n}+5)^{2}}+\frac{1}{(7 \mathrm{n}+6)^{2}}\right]
\end{aligned}
$$

Does this new subject represent a paradigm shift in mathematics?

References

1. Bailey, D., Borwein, J., et al.: Experimental Mathematics in Action. A K Peters, Natick (2007)
2. Borwein, J.: Implications of experimental mathematics for the philosophy of mathematics. In: Gold, B. Simons, A. (eds.) Proof \& Other Dilemmas: Mathematics and Philosophy, pp. 33-59. Mathematical Association of America (2008)

 -
 səd! !

But not everyone was pleased with these developments, these "exceptions and irregularities". Some called such functions "pathological", others gave them less pleasant designations. Thus Charles Hermite asserted (in 1893) that he "turn[ed] away with fright and horror from this lam entable evil of functions ..." [14, p. 973]. Henri Poincaré was more specific (1899) [14, p. 973]:
» Logic sometimes makes monsters. For half a century we have seen a mass of bizarre functions which appear to be forced to resemble as little as possible honest functions which serve some purpose. More of continuity, or less of continuity, more derivatives, and so forth In former times when one invented a new function it was for a practical purpose; today one invents them purposely to show up defects in the reasoning of our fathers and one wil deduce from them only that.

Hermite and Poincare did not prevail, of course. The work of Riemann, Weierstrass, and other (in the second half of the nineteenth century) in analysis necessitated-once again-a reexami nation of its foundations, leading to the "arithmetization of analysis" [4, 14].

11.4 The Nature of Proof: From Axiom-Based to Computer-Assisted

The later decades of the twentieth century saw the solution of major outstanding mathematical problems-including the Kepler conjecture, the four-color conjecture, the Bieberbach conjecture, Fermat's Last "Theorem", the Feit-Thompson conjecture, the problem of classification of all finite simple groups, and the Poincaré conjecture (this last was solved in 2006). The com puter played a major role in establishing some of these conjectures-and several others. This has occasioned a rethinking of the meaning and role of proof in mathematics.

The catalyst was the computer-aided proof (1976) of the four-color theorem by Kenneth Appel and Wolfgang Haken. The proof required the verification, by computer, of 1482 distinc configurations. Some critics argued that this proof (and others like it) was a major departur configurations. Some critics argued that this promen
from tradition. They advanced several reasons:
a. The proof contained thousands of pages of computer programs that were not published and thus were not open to the traditional procedures of verification by the mathematical community. In particular, how can a referee check the entire proof?
b. Both computer hardware and computer software are subject to error. Is the computer, then, an experimental tool?

 स!

- 6 't

" It is not surprising that Euclid goes to the trouble of demonstrating that two circles which cut one another do not have a common centre, that the sum of the sides of a triangle which is enclosed within another is smaller than the sum of the sides of the enclosing triangle. This geometer had to convince obstinate sophists who glory in rejecting the most evident truths; so that geometry must, like logic, rely on formal reasoning in order to rebut the quib blers.
c. The desire to decide among contradictory results bequeathed to the Greeks by earlier civilizations [12, p. 89]. For example, the Babylonians used the formula $3 r^{2}$ for the area of a circle, the Egyptians $\left[\frac{8}{9} \times 2 \mathrm{r}\right]^{2}$. (There is evidence that the Babylonians also used $3 \frac{1}{8}$ as an estimate for $\pi[8$, p. 11].) This encouraged the notion of mathematical demonstration, which in time evolved into the deductive method.
d. The need to resolve the "crisis" engendered in the fifth century BC by proof of the incommensurability of the diagonal and side of the square [3]. A fundamental tenet of the Pythagoreans was that all phenomena can be described by numbers, which to them meant positive integers. They developed important parts of geometry with the aid of this principle. In particular, the principle implied that any two line segments a and b are commensurable (have a common measure), that is, that there exists a line segment t such that $\mathrm{a}=\mathrm{mt}$, $\mathrm{b}=\mathrm{nt}$, with m and n positive integers. But around 430 BC they proved that the side and a ($\sqrt{2}$ in [7]. This hat $\sqrt{2}$. to their philosophy and their mathematics. And it might have provided an importa.
e. The need to teach. This may have forced the Greek mathematicians to consider the basic principles underlying their subject. It is noteworthy that the pedagogical motive in the formal organization of mathematics is also present in the works of later mathematicians, formal organization of mathematics is also present in the
notably Lagrange, Cauchy, Weierstrass, and Dedekind [8].

Euclid's great merit was to have collected, and arranged brilliantly in a grand axiomatic edific called Elements, much of the mathematics of the previous three centuries (with notable excep tions, such as conic sections). His opus comprises over 450 propositions (theorems), deduced from five (!) postulates (axioms), and arranged in thirteen "Books" (chapters). The postulate are:

1. A straight line may be drawn between any two points.
2. A straight line segment may be produced indefinitely.
3. A circle may be drawn with any given point as centre and any given radius.
4. All right angles are equal.
5. If a straight line intersects two other straight lines lying in a plane, and if the sum of the interior angles thus obtained on one side of the intersecting line is less than two right angles, then the straight lines will eventually meet, if extended sufficiently, on the side on which the sum of the angles is less than two right angles.

For over two thousand years, to teach elementary geometry meant to teach it essentially as For over two thousand years, to teach elementary geometry meant to teach it essentially a
Euclid had presented it. His masterpiece first appeared in print in 1482 (the printing press origi nated in ca. 1450). More than a thousand editions have appeared since, a profusion superseded
113. Pathological Functions: From Calculus to Analysis

Hermann Grassmann (1809-1877)

A pioneering work on the abstract notion of a vector space of arbitrary dimension was Her mann Grassmann's Doctrine of Linear Extension (1844). But this book attracted little attention it was "philosophical", and it was too abstract for its time. An 1862 edition was better received An abstract treatment of basic elements of vector space theory was given in 1888 by Giusepp Peano in his Geometric Calculus. See [13, 14]

11.3 Pathological Functions: From Calculus to Analysi

The aim of this section is to indicate some high points in the transition-in the nineteent entury-from calculus to analysis, in which "pathological functions" played a central role.
The calculus invented by Newton and Leibniz (see $>$ Section 11.1, above, and $>$ Chapter S) was based on variables related by equations, with the focus on geometry: finding areas, volumes, tangents.

The concept of function was introduced in the first half of the eighteenth century, and was made central around 1750 by Leonhard Euler, who declared-and showed in his books-that calculus is the branch of mathematics dealing with functions. Euler considered a function to be an (algebraic) "formula"-a so-called "analytic expression". Neither "formula" nor "analytic expression" was defined, but many examples were given. The essential point is that the concept of variable, applied to geometric objects in the seventeenth century, was gradually replaced in the eighteenth by that of function, understood to be an algebraic formula.

The nineteenth century ushered in a period of rigor in various areas of mathematics. Au gustin-Louis Cauchy (1789-1857) found the lack of rigor in calculus unsatisfactory, and his textbooks of the 1820s aimed at a remedy. He selected a few fundamental notions (limit, conti nuity, convergence, derivative, and integral), established the limit concept as the one on which to base all the others, and derived by fairly rigorous means the subject's major results. It is im portant to note that most of these concepts, as we understand them, were either not recognized or not clearly formulated before Cauchy's time. A "new" subject, "analysis", also known as th "theory of functions", was thus born [4].

But there were shortcomings in Cauchy's program. In particular, he conceived a function in the eighteenth-century way-as an analytic expression (a formula). But this was no longer

- э! һКГри

(כ)

[8zoI d'dit

 әәеds-є иеәр!

of anxiety about the nature of geometry run like fissures through late 19th-century mathematcs" [5, p. 247].
Euclidean geometry did not escape scrutiny. Although Euclid was the paragon of rigor for more than two thousand years, logical shortcomings were now recognized in his masterpiece Elements. For example, his very first proposition in Book I, which presents the construction of an equilateral triangle, has a faulty proof: while Euclid assumed implicitly that two circles, each of which passes through the center of the other, intersect, this observation requires an axiom of continuity, supplied two millennia later by David Hilbert. Gauss pointed out that such concept as "between", used freely and intuitively by Euclid, must be given an axiomatic formulation.
These challenges were taken up during the last two decades of the nineteenth century by a number of mathematicians. They provided, for projective, euclidean, and noneuclidean geomtries, axioms free of the types of blemishes that appear in Euclid's presentation. The first to do his was Moritz Pasch, who wrote an extensive work in 1882 on the foundations of projective geometry. Pasch set out clearly a crucial aspect of modern axiomatics, which departs radically from Euclid's procedure [8, p. 1008]:
(If geometry is to become a genuine deductive science, it is essential that the way in which inferences are made should be altogether independent of the meaning of the geometrical concepts, and also of the diagrams; all that need be considered are the relationships between the geometrical concepts asserted by the propositions and definitions.

The most influential work in this genre was Hilbert's Foundations of Geometry of 1899. His aim was "to present a complete and simplest possible system [Hilbert's italics] of axioms [for euclid ean geometry], and to derive from these the most important geometrical theorems" [1, p. 344]. To avoid the pitfalls in Euclid's Elements-reliance on intuitive arguments, often based on diagrams-Hilbert required twenty postulates; Euclid, recall, had five. Hilbert listed his axioms under five headings: I. axioms of connection, II. axioms of order, III. axiom of parallels (Euclid under five headings: I. axioms of connection, II. axioms of order, III. axiom of parallels (Eu
fifth axiom), IV. axioms of congruence, and V. axiom of continuity (Archimedes' axiom).
Crucial was the use, as urged by Pasch, of undefined terms, so-called primitive terms. Why are they needed? Because just as one cannot prove everything, hence the need for axioms, so one cannot define everything, hence the need for undefined terms. They are not uniquely de termined; among Hilbert's choices are "point", "(straight) line", and "plane". Euclid defined al three terms, for example, a "point" as "that which has no part"-which is not very informative

Euclid considered his axioms to be self-evident truths, but Hilbert's are neither self-eviden nor true. They are simply the starting points, the basic building blocks, of the theory-assump tions about the relations among the primitive terms of the axiomatic system. The primitive terms are said to be "implicitly" defined by the axioms. As early as 1891 Hilbert highlighted the observation about the arbitrary nature of the primitive terms in the now classic remark that "It must be possible to replace in all geometric statements the words point, line, plane by table hair mug" [13, p. 14]. It follows that the axioms, hence also the theorems, are devoid of mean ing. It is therefore not inappropriate to call Euclid's system "material axiomatics" and Hilbert's system "formal axiomatics" [3(a), p. 63 and 3(b), p. 171].
Hilbert's Foundations of Geometry went through ten editions (in the original German), sev en in Hilbert's lifetime. It served as a model of what an axiom system should be like, and more broadly, it "demonstrated brilliantly the vitality of the new axiomatic approach to geometry" [1, p. 361]. Garrett Birkhoff and Mary Katherine Bennett wrote (1987) of the Foundations that

Some Further Turning Points

 Mathematics, DOI 10.1007/978-1-4939--3264-1_11, © Springer Science+Business Media, LLC 2015We have discussed in this booklet a number of turning points in the evolution of mathematics, but of course we have not exhausted them all. In this final chapter we suggest five other topics or the reader to pursue-with relatively brief outlines and references
a. Notation: From Rhetorical to Symbolic
b. Space Dimensions: From 3 to $\mathrm{n}(\mathrm{n}>3$)
c. Pathological Functions: From Calculus to Analysis
d. The Nature of Proof: From Axiom-Based to Computer-Assisted
e. Experimental Mathematics: From Humans to Machines

11.1 Notation: From Rhetorical to Symbolic

We take symbols in mathematics for granted. Without a well-developed symbolic notation mathematics would be inconceivable to us. We should note, however, that the subject evolved for at least three millennia with hardly any symbols! The historian of mathematics Kirsti Ped erson notes the impact of the lack of notation on the early development of calculus [10, p. 47]:
" An important reason why mathematicians [of the early seventeenth century] failed to see the general perspectives inherent in their various methods [for solving calculus problems] was probably the fact that to a great extent they expressed themselves in ordinary language without any special notation and so found it difficult to formulate the connections between the problems they dealt with.

In crucially important developments, symbolic notation was introduced in algebra by François Viete (1540-1603) in the late sixteenth century, and in calculus by Gottfried Leibniz (1646-1716) and Isaac Newton (1642-1727) in the late seventeenth century. Leibniz' superior notation prevailed over Newton's. Its pedagogical advantages are well expressed by the mathematician Charles Edwards:
" It is hardly an exaggeration to say that the calculus of Leibniz [unlike that of Newton] bring within the range of an ordinary student problems that once required the ingenuity of an Archimedes or a Newton [9, p. 232].

A good notation aids not only in the proof of results but also in their discovery. A poor notatio can impede progress.

Two more examples of superb notations are Carl Friedrich Gauss' for congruences and Arthur Cayley's for matrices. Also important was the introduction of notations for positiv

$\cdot[\varepsilon \not \subset \varepsilon \cdot d$ 't]

 (8)

6 Chapter 1• Axiomatics-Euclid's and Hilbert's: From Material to Formal
during the following three decades. Nicolas Bourbaki, among its most able practitioners and promoters, gave an eloquent description of the essence of the axiomatic method at what was perhaps the height of its power, in 1950 [2, p. 223]:
" What the axiomatic method sets as its essential aim, is exactly that which logical formalism by itself cannot supply, namely the profound intelligibility of mathematics. Just as the experimental method starts from the a priori belief in the permanence of natural laws, so the axiomatic method has its cornerstone in the conviction that, not only is mathematics not a randomly developing concatenation of syllogisms, but neither is it a collection of more or less "astute" tricks, arrived at by lucky combinations, in which purely technical cleverness wins the day. Where the superficial observer sees only two, or several, quite distinct theo ries lending one another "unexpected support" through the intervention of a mathematician of genius, the axiomatic method teaches us to look for the deep-lying reasons for such a discovery, to find the common ideas of these theories, buried under the accumulation of details properly belonging to each of them, to bring these ideas forward and to put them in their proper light.

In this article Bourbaki presents a panoramic view of mathematics organized around what he calls "mother structures"-algebraic, ordered, and topological, and various substructures and cross-fertilizing structures. This must have been an alluring, even bewitching, perspective to those growing up mathematically during this period.

Ancient vs. Modern Axiomatics
There are significant differences between Euclid's axiomatics and its modern incarnation in the nineteenth and twentieth centuries. Comparing Euclid's Elements with Hilbert's Foundations of Geometry makes starkly clear how standards of rigor have evolved. Moreover, while the chief role played by the axiomatic method in ancient Greece was (probably) that of providing a sure foundation, it became in the first half of the twentieth century a tool of research. Note for example, the rich and deep theory of groups, which comprises the logical consequences of "simple" set of four axioms.

The modern axiomatic method was also indispensable in clarifying the status of various mathematical methods and results, such as the axiom of choice and the continuum hypothesis, to which mathematicians' intuition provided little guide. And it played an essential role in the discovery of certain concepts, results, and theories. For example, the desarguesian and nondesarguesian geometries "could never have been discovered without [the axiomatic] method" [4, p. 182]. Thus the sometimes opposed activities of discovery and demonstration coexisted in the axiomatic method
The modern axiomatic method was however not universally endorsed. Although some, notably Hilbert, claimed that it is the central method of mathematical thought, others, for instance Klein, argued that as a method of discovery it tends to stifle creativity. And it has its limitations as a method of demonstration. The following quotation from Hermann Weyl (1885-1955) puts the issue in a broader perspective [13, p. 38; his italics]:

》 Large parts of modern mathematical research are based on a dexterous blending of axiomatic and constructive procedures.

92 Chapter 10 • Philosophy of Mathematics: From Hilbert to Gödel

It is probably safe to say, however, that most mathematicians are untroubled, at least in their daily work, about the debates over their subject's underpinnings. "I think", says the distin guished modern mathematician Richard Askey, there is far too much emphasis on [...] the foundations of mathematics in much of what is published on the history of mathematics" [1, p. 203]. Philip Davis and Reuben Hersh put the issue in perspective [4, p. 318]:

》 If you do mathematics every day, it seems the most natural thing in the world. If you stop to think about what you are doing and what it means, it seems one of the most mysterious.

Weyl says it more lyrically:
" The question of the ultimate foundations and the ultimate meaning of mathematics remains open; we do not know in what direction it will find its final solution or even whether a final objective answer can be expected at all. 'Mathematizing' may well be a creative activity of man, like language or music, of primary originality, whose historical decisions defy complete objective rationalization [15, p. 6].

Problems and Projects

1. What is Platonism, and how is it related to Plato's view of mathematics?

Discuss the axiom of choice. Why was it controversial?
3. Discuss briefly the Zermelo-Fraenkel axiomatization of set theory. How did it avoid Russsell's paradox?
4. What is the continuum hypothesis? Discuss Gödel's and Cohen's results dealing with this hypothesis.
. What are cantorian and noncantorian set theories? Compare with euclidean and noneuclidean geometries.
. Discuss humanism, a philosophy of mathematics proposed by Reuben Hersh. See [12]
. Discuss the philosophy of proof outlined by Imre Lakatos (1922-1974) in his booklet
Proofs and Refutations.
8. It has been claimed that Gödel's incompleteness theorems imply the intellectual superiority of humans over machines. Discuss. See for example [9].
9. Discuss the role of proof in mathematics and changes in its practice. See $[4,5,10,14]$

References

1. Aspray, W., Kitcher, P. (eds.): History and Philosophy of Modern Mathematics. University of Minnesota Press, Minneapolis (1988)
Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967) (2000) (2.: Engines of Logic: Mathematicians and the Origins of the Computer. W.W. Norton \& Co. New 4. Davis, P.J., Hersh, R: Th
E. Marchisotto, 1995)

De Millo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems and programs. Communica-
tions of the ACM 22.27-280 tions of the ACM 22, 271 -280 (1979)
6. Edwards, H.M.: Kronecker's algorithmic mathematics. Math. Intell. 31(2), 11-14 (2009)

Eves, H.: Greatic Jents in Mathematics, 2 vols. (before 1650, and after 1650, resp.). Mathematical Associa-
Feferman, S.: What does logic have to tell us about mathematical proofs? Math. Intell. 2(1) $20-24$ (1979)

 (8661) чч
(

 и!!

รәวиәдәјуу

qi! H ssnos!a ' L

 ง乡fnsэ.

uo!snjuaos 8.0

$\cdot[$ عoI $\cdot \mathrm{d}$ 'ti] чо!̣его

($\varsigma \varsigma 61-\varsigma 881$) Кәм ииешәә

8 Chapter 1• Axiomatics-Euclid's and Hilbert's: From Material to Formal
14. Wilder, R.L.: Evolution of Mathematical Concepts. Wiley, Hoboken (1968)

Wussing, H.: The Genesis of the Abstract Group Concept. MIT Press. Cambridge (1984). (Translated from the German by A. Shenitzer, with the editorial assistance of H . Grant)

Further Reading

16. Artmann, B.: Euclid: The Creation of Mathematics. Springer, Beelin (1999)
17. Cuomo, S.: Ancient Mathematics. Routledge, London (2001)
B. Davis, P.J., Hersh, R.:The Mathematical Experience. Birkhäuser, Boston (1981) (Revised Study Edition, with E. Marchisotto, published in 1995)
18. Mueller, I.: Philosophy of Mathematics and Deductive Structure in Euclid's Elements. MIT Press, Cambridge (1981)

Netz, R.: The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge University Press, Cambridge (1999)
21. von Neumann, J.:The mathematician. In: Newman, J.R. (ed.) The World of Mathematics, Vol. 4 , pp. 2053-2063. Simon and Schuster, New York (1956)
22. von Neumann, J.: The role of mathematics in the sciences and in society. In: Taub, A.H. (ed.) Collected Works, Vol. 6, pp. 477-490. Macmillan, London (1963)
23. Weyl. H.: Mathematics and logic. Am. Math. Mon. 53, 2-13 (1946)
24. Wilder, R.L.:The role of the axiomatic method. Am. Math. Mon. 74, 115-127 (1967)

Among the results unacceptable to the intuitionists is the law of trichotomy: Given any real number N , either $\mathrm{N}>0$ or $\mathrm{N}=0$ or $\mathrm{N}<0$. The following example substantiates that point $[10, \mathrm{p} . \mathrm{xx}]$:

$$
\text { Define a real number } \mathrm{N} \text { as follows: } \mathrm{N}=\sum_{\mathrm{n}=2}^{\infty} \frac{\mathrm{a}_{\mathrm{n}}}{10^{n}} \text {, where }
$$

The definition of N is acceptable to both the formalists and the intuitionists; its digits can be calculated-at least in theory-to any degree of accuracy. But to the intuitionists, none of $\mathrm{N}>0$ $\mathrm{N}<0$, or $\mathrm{N}=0$ is meaningful since it is not known if Goldbach's conjecture (that every even number greater than 2 is a sum of two primes) is true or false. Thus the law of trichotomy fails.
10.7 Nonconstructive Proofs

A prominent feature of nineteenth-century mathematics was nonconstructive existence proofs-which were almost unknown before that time. Thus Gauss proved the "Fundamental Theorem of Algebra" about the existence of roots of polynomial equations without showing how to find them. Augustin-Louis Cauchy and others proved the existence of solutions of differential equations without providing the solutions explicitly. Cauchy proved the existence of the integral of an arbitrary continuous function, but was often unable to evaluate integrals of specific func tions. He gave tests of convergence of series without indicating what they converge to. Late in the century Hilbert proved the existence of, but did not explicitly construct, a finite basis for an ideal in a polynomial ring. Richard Dedekind constructed the real numbers by using completed infinities. Such examples abound. All were rejected by the intuitionists. Hermann Weyl said of

sıəqunN Xəןduoว 0if leəy moit pue sdnoid of suo！penby سo』』 ：כ！qnつ əपұ to sןeכ！pey Kq uo！łn｜os

ws！uo！！̣！ $\mathfrak{Z u |}$

－［L］วәS

：7еч SMOIIOJ

terms on the two sides of an equation. These are of course basic procedures for solving polynomial equations. al-Khwārizmī, from whose name is derived the word "algorithm", applied these procedures to the solution of quadratic equations, which he classified into five types: $a x^{2}=b x$ $a x^{2}=b, a x^{2}+b x=c, a x^{2}+c=b x$, and $a x^{2}=b x+c$. This categorization was necessary since al Khwārizmī did not admit negative coefficients or zero into the number system. He also had no algebraic notation, so that his problems and solutions were expressed rhetorically (in words) He did however offer (geometric) justification for his solution procedures.

2.2 Cubic and Quartic Equations

The Babylonians (as we mentioned) were solving quadratic equations by about 1600 BC , using essentially an equivalent of our "quadratic formula". A natural question was therefore whether cubic equations could be solved using "similar" formulas; three thousand years would pass be fore the answer was discovered. It was a great event in algebra when mathematicians of the sixteenth century succeeded in solving-by radicals-not only cubic but also quartic equations. This accomplishment was very much in character with the mood of the Renaissance-which wanted not only to absorb the classic works of the ancients but to strike out in new directions. Indeed, the solution of the cubic unquestionably proved a far-reaching departure.
A "solution by radicals" of a polynomial equation is a formula giving the roots of the equation in terms of its coefficients. The only permissible operations to be applied to the coefficient are the four algebraic operations (addition, subtraction, multiplication, and division) and the extraction of roots (square roots, cube roots, and so on, that is, "radicals"). For example, the quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ is a solution by radicals of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

A solution by radicals of the cubic was first published in 1545 by Girolamo Cardano, in hi Ars Magna (The Great Art, referring to algebra); it was discovered earlier by Scipione del Ferro and by Niccolò Tartaglia. The latter had passed on his method to Cardano, who had promised that he would not publish it; but he did. That is one version of events, which involved consider able drama and passion. A blow-by-blow account is given by Oysten Ore [12, pp. 53-107]. Her is Cardano's own rendition [7, p. 63]

》 Scipio Ferro of Bologna well-nigh thirty years ago [i.e., ca. 1515] discovered this rule and handed it on to Antonio Maria Fior of Venice, whose contest with Nicolò Tartaglia of Brescia gave Nicolò occasion to discover it. He [Tartaglia] gave it to me in response to my entreaties, though withholding the demonstration. Armed with this assistance, I sought out its demonstration in [various] forms. This was very difficult.

What came to be known as "Cardanos formula" for the solution of the cubic $\mathrm{x}^{3}=\mathrm{ax}+\mathrm{b}$ is given by

$$
x=\sqrt[3]{\frac{b}{2}+\sqrt{\left(\frac{b}{2}\right)^{2}-\left(\frac{a}{3}\right)^{3}}}+\sqrt[3]{\frac{b}{2}-\sqrt{\left(\frac{b}{2}\right)^{2}-\left(\frac{a}{3}\right)^{3}}} .
$$

Kurt Gödel (1906-1978)

10.4 Gödel's Incompleteness Theorem

Hilbert's grand design was laid to rest by Kurt Gödel's two incompleteness theorems of 1931, hese showed the inherent limitations of the axiomatic method
. The consistency of a large class of axiomatic systems, including those for arithmetic and set theory, cannot be established within the systems.
2. Moreover, any such system which is consistent must be incomplete. That is, given an axiomatic system, there will always be true results which are expressible in that system, but which cannot be established within the system.

For more technical statements, see $[3,8]$.
In connection with the first result, Weyl remarked: "God exists since mathematics is consistent and the devil exists since we cannot prove the consistency" [14, p. 1206]. (That math ematics is consistent is of course an article of faith of every working mathematician; see below.) The second result has elicited the (apparently anonymous) comment that Gödel gave a formal demonstration of the inadequacy of formal demonstrations.

 Креәдци—әs!̣̆

 -гппиноу sب̣ч шоху рәиبш

ws!ןemas $\varepsilon^{\circ} \mathbf{0 l}$

But to no avail: although new ideas for solving the cubic and quartic were found, they did not yield the desired extensions. One approach, however, undertaken by Joseph Louis Lagrange in a paper of 1770 entitled Reflections on the Algebraic Solution of Equations, proved promising Lagrange analyzed the various methods devised by his predecessors for solving cubic and quartic equations, and saw that-since those methods did not work when applied to the quinticdeeper scrutiny was required. In his own words [14, p. 127]:
» propose in this memoir to examine the various methods found so far for the algebraic soution of equations, to reduce them to general principles, and to let us see a priori why these methods succeed for the third and fourth degree, and fail for higher degrees.

Here are some of the key ideas of Lagrange's approach. With each polynomial equation of arbitrary degree n he associated a "resolvent equation", as follows: let $f(x)$ be the original equation, with roots $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$. (As is the usual practice, we denote by " $\mathrm{f}(\mathrm{x})$ " both the polynomial and the polynomial equation.) Pick a rational function $R\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ of the roots and coefficients of $f(x)$ (Legrange described method for doing this) Consider the differnt value oefficien,x_{1}, which $R\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ assumes under all he "utations of the roots $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of $f(x)$. If these values are denoted by $y_{1}, y_{2}, y_{3}, \ldots, y_{k}$, the "resolvent equation" is $\left(x-y_{1}\right)\left(x-y_{2}\right) \ldots$
$\left(\mathrm{x}-\mathrm{y}_{\mathrm{k}}\right)$. Lagrange showed that k divides n !-the source of what we call "Lagranges theorem"
For example, if $f(x)$ is a quartic with roots $x_{1}, x_{2}, x_{3}, x_{4}$, then $R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ may be taken to be $x_{1} x_{2}+x_{3} x_{4}$, and this function assumes three distinct values under the 24 permutations of x_{1}, x_{2}, x_{3}, and x_{4}. Thus, the resolvent equation of a quartic is a cubic. However, in carrying over this analysis to the quintic, Lagrange found that the resolvent equation is of degree six, rather han the hoped-for degree four.
Although Lagrange did not succeed in settling the problem of the solvability of the quintic by radicals, his work was a milestone. It was the first time that an association was made between the solutions of a polynomial equation and the permutations of its roots. In fact, Lagrange speculated that the study of the permutations of the roots of an equation was the cornerstone of the theory of algebraic equations-"the genuine principles of the solution of equations", as he put it [14, p. 146]. He was of course vindicated in this by Evariste Galois.
believe that the numbers and functions of analysis are not the arbitrary product of our minds; I believe that they exist outside of us with the same character of necessity as the ob ects of objective reality; and we find or discover them and study them as do the physicists, chemists and zoologists [14, p. 1035].

The above three quotations, from Charles Hermite in 1893, Henri Poincaré in 1899, and again Hermite in 1905, respectively, are a reaction to various examples of "pathological" functions introduced during the previous half-century: integrable functions with discontinuities dense in any interval, continuous nowhere-differentiable functions, nonintegrable functions that are limits of integrable functions, and others.

Later generations will regard Mengenlehre [Set Theory] as a disease from which one has recovered [14, p. 1003].

This is Poincaré again, speaking (in 1908) about Cantor's creation of set theory, especially in connection with the paradoxes that had arisen in the theory [17, 18]. Compare Poincarés position with that of David Hilbert, the other giant of this period:
" No one shall expel us from the paradise which Cantor created for us [14, p. 1003].
The above sentiments, expressed by some of the leading mathematicians of the period, suggest an impending crisis. Although mathematical controversies had arisen before the nineteenth century, for example the vibrating-string controversy between d'Alembert and Euler, these were isolated cases. The frequency and intensity of the disaffection expressed in the nineteenth century were unprecedented and could no longer be ignored. The result was a split among mathematicians concerning the way they viewed their subject-its nature, meaning, and meth ods. The formal expression of that split was the rise in the early twentieth century of three schools of mathematical thought, three philosophies of mathematics-logicism, formalism, and intuitionism.
10.2 Logicism

The logicist thesis, expounded in the monumental Principia Mathematica of Bertrand Russel and Alfred North Whitehead, held that mathematics is part of logic. Mathematical concept are expressible in terms of logical concepts; and mathematical theorems are tautologies, true by virtue of their form rather than their factual content. This thesis was motivated, in part, by the paradoxes in set theory, by the work of Gottlob Frege on mathematical logic and the foundations of arithmetic, and by the espousal of mathematical logic by Giuseppe Peano and his chool. Its broad aim was to provide a foundation for mathematics. Although the logicist thesis解 was important philor and it it was not mbrace by her ics other than in terms of logical concepts. For ano her, it took forver to obtain results of ny consequence; for example, it is only on p. 362 of the Principia that Russell and Whitehead how that $1+1=2$ (!); see $[4$, p. 334]. "If the mathematical process were really one of strict, logi cal progression", observe Richard A. De Millo (1947-) et al., "we would still be counting on our

des ұue

чวчим suo！

［ $\left.\varepsilon / 6 \cdot d^{\prime}+1\right]$

＇sseduoo pue ə8pa

 и！syооя，

ןəpọ 07 ұләqा！H سO』」 ：Sכ！ఛеயәपұеW to Kydoso｜！पd

Consider the cubic $\mathrm{x}^{3}=9 \mathrm{x}+2$. Its solution, using the above formula, is

$$
x=\sqrt[3]{\frac{2}{2}+\sqrt{\left(\frac{2}{2}\right)^{2}-\left(\frac{9}{3}\right)^{3}}}+\sqrt[3]{\frac{2}{2}-\sqrt{\left(\frac{2}{2}\right)^{2}-\left(\frac{9}{3}\right)^{3}}}=\sqrt[3]{1+\sqrt{-26}}+\sqrt[3]{1-\sqrt{-26}} .
$$

What is one to make of this solution? Since Cardano was suspicious of negative numberscalling them "fictitious" [10, p. 40]-he certainly had no taste for their square roots, which he named "sophistic negatives" [10, p. 40]. He therefore regarded his formula as inapplicable to equations such as $x^{3}=9 x+2$. Judged by past experience, this was not an unreasonable attitude For example, to pre-Renaissance mathematicians the quadratic formula could not be applied to $x^{2}+1=0$.

All this changed when the Italian Rafael Bombelli came on the scene. In his importan book Algebra (1572) he applied Cardano's formula to the equation $x^{3}=15 x+4$ and obtained $x=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}$. But he could not dismiss this solution, unpalatable as it would have been to Cardano, for he noted-by inspection-that $\mathrm{x}=4$ is also a root of this equation its other two roots, $-2 \pm \sqrt{3}$, are also real numbers. Here was a paradox: while all three roots of the cubic $x^{3}=15 x+4$ are real, the formula used to obtain them involved square roots of negative numbers-meaningless at the time. How was one to resolve the paradox?
Bombelli had a "wild thought": since the radicands $2+\sqrt{-121}$ and $2-\sqrt{-121}$ differ only in sign, the same might be true of their cube roots. He thus let

$$
\sqrt[3]{2+\sqrt{-121}}=a+b \sqrt{-1}, \quad \sqrt[3]{2-\sqrt{-121}}=a-b \sqrt{-1},
$$

and proceeded to solve for a and b by manipulating these expressions according to the established rules for real variables. He deduced that $\mathrm{a}=2$ and $\mathrm{b}=1$ and thereby showed that, indeed,

$$
x=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}=(2+\sqrt{-1})+(2-\sqrt{-1})=4
$$

Bombelli had given meaning to the "meaningless". He put it thus [11, p. 19]:
" It was a wild thought in the judgment of many; and I too for a long time was of the same opinion. The whole matter seemed to rest on sophistry rather than on truth. Yet I sought so long, until l actually proved this to be the case.

Moreover, Bombelli developed a "calculus" for complex numbers, stating such rules a $(+\sqrt{-1})(+\sqrt{-1})=-1$ and $(+\sqrt{-1})(-\sqrt{-1})=1$, and defined addition and multiplication of some of these numbers. These innovations signaled the birth of complex numbers.
But note that this is a retrospective view of what Bombelli had done. He did not postulat he existence of a system of numbers-called complex numbers-containing the real number nd satisfying basic properties of numbers. To him, the expressions he worked with were just hat; they were important because they "explained" hitherto inexplicable phenomena. Square oots of negative numbers could be manipulated in a meaningful way to yield significant results. This was a bold idea indeed. See [8, 10].

References

Bochner, S.: Infinity. In: Dictionary of the History of Ideas, III. Scribner's, New York (1973)
2. Bottazzini, U.: The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstras inger-Verlag, New York (1986)
3. Boyer, C.B., Merzbach, U.C.: A History of Mathematics, 2nd edn. Wiley, New York (1989)
4. Dantzig, T.. Number: The Language of SCience, 4th edn. Pi Press, New Jersey (2005) (orig. 1930).
5. Dauben, J.W.. The trigonometric background to Georg Cantor's theory of sets. Arch. Hist. Exact Sci. 7 181-216 (1970/1971)
Dauben, J.W.: Georg Cantor: His Mathematics and Philosophy of the Infinite. Harvard University Press Cambridge (1979)
. Eves, H.: Great Momeantor and the origins of transfinite set theory. Sci. Am. 248, 122-131 (1983) DC (1981)
. Halmos, P.R.: Naiive Set Theory. Springer, New York (1974) (orig. 1960)
10. Kline, M.: Mathematical Thought from Ancient to Modern Times. Oxford University Press, New York (1972)
11. Maor, E.: To Infinity and Beyond: A Cultural History of the Infinite. Birkhäuser, Boston (1987)
2. Rucker, R.: Infinity and the Mind: The Science and Philosophy of the Infinite. Birkhäuser, Boston (1982)
14. Stillwell, J.: Roads to Infinity. A K Peters (2010)
15. Van Vleck, E.B.: The influence of Fourier series upon the development of mathematics. Science 39, 113-124 (1914)

Further Reading

16. Davenport, A.A.: The Catholics, the Cathars, and the concept of infinity in the thirteenth century. Isis 88 , 263-295 (1997)
17. Vilenkin, N.Y.:. In Search of Infinity. Birkhäuser, Boston (1995) (Translated from the Russian by A. Shenitzer)

[$6 \mathrm{cI} \cdot \mathrm{d}$ 'II]

'งә!̣мииว

 [еицріо до sұиәш!

әчҰ se

 -(गәддеч

 stıed su! jo

" Because all conceivable numbers are either greater than zero, less than zero or equal to zero, then it is clear that the square roots of negative numbers cannot be included among the possible numbers. Consequently we must say that these are impossible numbers. And this circumstance leads us to the concept of such numbers, which by their nature are impossible, and ordinarily are called imaginary or fancied numbers, because they exist only in the imagination.

Even the great Gauss, who in his doctoral thesis of 1797 gave the first essentially correct proof of the Fundamental Theorem of Algebra, claimed as late as 1825 that "the true metaphysics of $\sqrt{-1}$ is elusive" [9, p. 631]. But by 1831 Gauss had overcome these metaphysical scruples and, in connection with a work on number theory, published his scheme for representing them geometrically, as points in the plane. Similar representations by Caspar Wessel in 1797 and by Jean Robert Argand in 1806 had gone largely unnoticed; but when given Gauss' stamp of approval the geometric representation dispelled much of the mystery surrounding complex numbers.

Doubts concerning the meaning and legitimacy of complex numbers persisted for two and De centuries following Bombelli's work. Yet during that same period these numbers were har how inexplicable things be so useful? This is recurent them in the his used extensively. How can inexplicable things be so useful? This is a recurrent theme in the history of mathematics. Bombellis resolution of the parado
$\mathrm{x}^{3}=15 \mathrm{x}+4$ is an excellent example of this phenomenon.

2.7 Maturity

In the next two decades further developments took place. In 1833 William Rowan Hamilton gave an essentially rigorous algebraic definition of complex numbers as pairs of real numbers and in 1847 Augustin-Louis Cauchy gave a completely rigorous definition in terms of congru nce classes of real polynomials modulo $x^{2}+1$. In this he modelled himself on Gauss' definition of "congruences" for the integers. By the latter part of the nineteenth century most vestiges of mystery and distrust around complex numbers could be said to have disappeared [6].

But this is far from the end of their story. Various developments in mathematics in the ineteenth century gave us deeper insight into the role of complex numbers in mathematics and in other areas. These numbers offer just the right setting for dealing with many problems in mathematics in such diverse areas as algebra, analysis, geometry, and number theory. They have a symmetry and completeness that is often lacking in the real numbers. The followin ee quotations by Gaus in 1811 Riemann in 1851, and Jacques Hadamard in the 1890 s, re pectively, say it well:
» Analysis ... would lose immensely in beauty and balance and would be forced to add very hampering restrictions to truths which would hold generally otherwise, if ... imaginary quantities were to be neglected $[3, p .31]$.
The original purpose and immediate objective in introducing complex numbers into math ematics is to express laws of dependence between variables by simpler operations on the quantities involved. If one applies these laws of dependence in an extended context, by giving the variables to which they relate complex values, there emerges a regularity and harmony which would otherwise have remained concealed [6, p. 64].
The shortest path between two truths in the real domain passes through the complex domain [9, p. 626].

$\mathrm{n}<2^{\mathrm{n}}$, we conjecture that $\mathrm{c}<2^{\mathrm{c}}=$ the number of subsets of R , and, more generally, that for any set $\mathrm{A},|\mathrm{A}|<|\mathrm{P}(\mathrm{A})|$, where $\mathrm{P}(\mathrm{A})$ is the set of all subsets of A , called the "power set" of A . It is easy to see that $|\mathrm{P}(\mathrm{A})|$ is the number of functions $\mathrm{f}: \mathrm{A} \rightarrow\{0,1\}$.

To show that $|\mathrm{A}|<|\mathrm{P}(\mathrm{A})|$, note first that $|\mathrm{A}| \leq|\mathrm{P}(\mathrm{A})|$. If $|\mathrm{A}|=|\mathrm{P}(\mathrm{A})|$, then there exists a map $: A \rightarrow P(A)$ which is $1-1$ and onto. Let $B=\{b \in A: b \notin f(b)\}$. Since fis onto, pick $\mathrm{a} \in \mathrm{A}$ such that $f(a)=B$. Then $a \in B$ if and only if $a \notin B$, a contradiction. Thus $|A|<|P(A)|$.
Note that the "operator" P can be iterated, so that we get an infinite chain of increasing cardinal numbers, $|\mathrm{A}|<|\mathrm{P}(\mathrm{A})|<|\mathrm{P}(\mathrm{P}(\mathrm{A}))|<$..... This seemingly blissful state of affairs leads to serious difficulties. For if $\mathrm{S}=\{$ all sets $\}$, then for every set $\mathrm{T},|\mathrm{T}| \leq|\mathrm{S}|$. In particular, $|\mathrm{P}(\mathrm{S})| \leq|\mathrm{S}|$ But we have shown that $|\mathrm{A}|<|\mathrm{P}(\mathrm{A})|$ for any set A . So $|\mathrm{S}|<|\mathrm{P}(\mathrm{S})|$. This is a contradiction-a paradox. It is a serious paradox, for it mandates a restricted notion of set. In particular, $\mathrm{S}=\{$ all sets\} is not a set, although one would have thought that any collection of objects is a set. S is simply too large. So we need to restrict the notion of set (see \downarrow Chapter 10).
The other question left open is whether there is a cardinal greater than \aleph_{0} and less than Cantor thought there is none, and tried to prove it, without success. It turns out that both "yes" and "no" are valid answers! This mysterious statement must be clarified, of course; it will be in $>$ Chapter 10 .

Other problems and paradoxes arose in the theory of sets in the decades following Cantor work. For example, consider the set $S=\{x: x \notin x\}$. Then $S \in S$ if and only if $S \notin S$. This is the famous Russell Paradox. A mathematical school arose which viewed the completed infinite as taboo, as Aristotle had urged more than two millennia earlier. The potential infinite will do just fine, that school argued. We can recover much of known mathematics without its use, they claimed. Poincaré, one of its outstanding early founders, declared that "later generations will regard [Cantor's] set theory as a disease from which one has recovered" [10, p. 1003]. But this was a minority opinion. Hilbert, representing the majority view, countered: "No one shall expel us from the paradise which Cantor has created for us" [10, p. 1003].
 -әш!р деч әшоя

 'sıaq
 цuициемч

 รฟวə!o.d. pue swəgoxd

sməqosd ло!ew омд 8.

 $\mathcal{E} 8 \mathrm{I}$ แ! рәлолd ә!

(s.raqun

 ечң имочs әлеч әм ' ((

i. The even natural numbers.
ii. The integers.
iii. The positive rational numbers (nontrivial for students).
v. The rational numbers.
v. The algebraic numbers

An "algebraic number" is a complex number which is a root of a polynomial equation with integer coefficients. Those complex numbers that are not algebraic are called "transcendental". Algebraic numbers are generalizations of rational numbers: the rational number m / n is a root of the equation $n x-m=0, m$ and n integers. The algebraic numbers are important especially in number theory (see \downarrow Chapter 6)
To show that the algebraic numbers can be listed in a sequence, we associate with each polynomial $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}, a_{i}$ integers, the rational number $2^{a_{0}} \times 3^{a_{1}} \times 5^{a_{2}} \times \ldots \times p_{n}^{a_{n}}$, where p_{n} is the $(\mathrm{n}+1)$-st prime. This mapping is a 1-1 correspondence between all polynomials with integer coefficients and the positive rational numbers. Since each polynomial has finitely many roots, it follows that the algebraic numbers can be listed in a sequence.

We have given various examples of sets which can be listed in a sequence. We refer to these sets as "denumerable" or "countable" - sets which can be enumerated. They all have the sam cardinality, which we denote by \aleph_{0} (aleph subzero; "aleph" is the first letter of the Hebrew alphabet). It is the smallest infinite cardinal. More generally, the cardinality of a set S is denoted by $|\mathrm{S}|$; then, given two infinite sets S and $\mathrm{T},|\mathrm{S}| \leq|\mathrm{T}|$ if there exists a $1-1$ correspondence between S and a subset of T . If $|\mathrm{S}| \leq|\mathrm{T}|$ but $|\mathrm{S}| \neq|\mathrm{T}|$, then $|\mathrm{S}|<|\mathrm{T}|$.

9.6 Paradoxes Regained

Let us now consider some geometric examples of infinite sets. We have seen that the points on two circles of unequal diameters have equal cardinality. It is therefore not surprising that any two line segments have the same cardinality. For example, the function $f(x)=2 x, x \in(a, b)$ gives a 1-1 correspondence between two intervals, one twice the other's length. What is surpris ing (shocking?) is that the points on a line segment, no matter how small, and on the entire real ing (shocking?) is that the points on a line segment, no matter how small, and on the cntire real
line have the same cardinality. The mapping $f(x)=\tan x,-\pi / 2<x<\pi / 2$, gives a $1-1$ corresponline have the same cardinality. The mapping $\mathrm{f}(\mathrm{x})=\operatorname{tanx}$,
dence between the interval $(-\pi / 2, \pi / 2)$ and the real line.
Another unexpected but fundamental result is that the real numbers are nondenumerable (uncountable), that is, their cardinality is greater than \aleph_{0}. It was only after fruitless attempts to prove the contrary that Cantor succeeded in establishing this. Here is a proof, though not Can tors. Suppose that the real numbers in the interval (0,1) can be writen in a sequence, say a, a a_{3}, \ldots. Enclose each a_{i} in an interval of length $1 / 10^{i}$. Then the interval $(0,1)$ has been enclosed with intervals of total length $1 / 10+1 / 10^{2}+1 / 10^{3}+\ldots=1 / 9$, obviously a contradiction.

Yet another of Cantor's results (proved in the 1870s) which was contrary to prevailing opinion, and to "common sense", was that the real numbers and the complex numbers have the same cardinality. He found this "astonishing", given that the two sets are of different dimensions. He wrote to Richard Dedekind about it, exclaiming: "I see it but I don't believe it" [7, p. 126]. We prove here an equivalent result, namely that the line segment $\mathrm{A}=(0,1)$ and the square $B=(0,1) x(0,1)$ have the same cardinality. Define mappings $f: A \rightarrow B$ by $f\left(0 . r_{1} r_{2} r_{3} \ldots\right)=\left(0 . r_{1} r_{3} r_{5} \ldots\right.$ $\left.0 . r_{2} \mathrm{r}_{4} \mathrm{r}_{6} \ldots\right)$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ by $\mathrm{g}\left(0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \ldots, 0 . \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \ldots\right)=\left(0 . \mathrm{b}_{1} \mathrm{c}_{1} \mathrm{~b}_{2} \mathrm{c}_{2} \mathrm{~b}_{3} \mathrm{c}_{3} \ldots\right)$. With a little care to avoid duplication, these mappings establish a $1-1$ correspondence between A and B.

 иب̣ sчиәшdорәләр эч!

səฉ入еวsəa

 sem

 КК

 Кџ! реч оә!!

\$507 sexopered t`6

،Кч!

René Descartes (1596-1650)

But the main motivation for the creation of analytic geometry came not from practical problems but from a desire to systematize the ancients' problem-solving tools. Descartes noted that many constructions and proofs in euclidean geometry called for new, inventive, and ad hoc approaches. He therefore undertook to exploit the power of algebra to provide a broad methodology for solving geometric problems.
Descartes was arguably the first great "modern" philosopher, as well as a first-rate mathmatician and scientist. According to the distinguished historian of mathematics Henk Bos (1940-):
» Descartes' mathematics was a philosopher's mathematics. From the earliest documented phase in his intellectual career, mathematics was a source of inspiration and an example for his philosophy, and, conversely, his philosophical concerns strongly influenced his style and program in mathematics [2, p. 228].

His great mathematical work-Geometry (La Géométrie)-appeared as one of the appendices to his philosophical treatise Discourse on the Method of Reasoning Well and Seeking Truth in the Sciences. In the latter work he sought a way to establish truths in all fields of endeavor. Geometry was identified as one of the three disciplines exhibiting that general method; the other two were meteorology and optics.
The essence of Descartes' method in geometry is given in several places in his book; here is one [3, p. 90]:
» All points of a geometric curve [as defined by motions] must have a definite relation expressed by an equation.

In his analysis of geometric problems Descartes admitted only certain types of curves, namely those defined by "motions" or by loci [9, p. 483]. As an application of this method, he singled out for special attention the so-called Problem of Pappus: given four straight lines, to find the locus of a point that moves so that the product of its distances from two of the lines is in a fixed ratio to the product of its distances from the other two lines [11, p. 128]. Descartes
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \ldots\end{array}$
\downarrow さ \downarrow さ \downarrow ฟ
$\begin{array}{lllllll}1 & 4 & 9 & 16 & 25 & 36 & \ldots\end{array}$
Galileo concluded that the difficulties arise because
" We attempt, with our finite minds to discuss the infinite, assigning to it those properties which we give to the finite and limited; but this ... is wrong, for we cannot speak of infinite quantities as being the one greater or less than or equal to another. [12, p. 5]

Further rejection of the actual infinite came from Descartes, Spinoza, Leibniz, Hobbes, and Berkeley (see [1]). Even the great Gauss objected to its use, in a letter to his friend Schumacher in 1831:
") | protest against the use of an infinite quantity as an actual entity; this is never allowed in mathematics. The infinite is only a manner of speaking, in which one properly speaks of limits to which certain ratios can come as near as desired, while others are permitted to increase without bound. [8, p. 160]

9.3 Cantor

Modern understanding of the mathematical infinite is the almost singlehanded creation of Georg Cantor. Cantor urged that the old distinction between the potential and the actual in finite is dubious: "in truth the potentially infinite concept has only a borrowed reality, insofar as a potentially infinite concept always points toward a logically prior actually infinite concep whose existence it depends on" $[12$, p. 3]. His revolutionary approach stems from 1870, when, on the urging of a colleague at the University of Halle, he started doing research on trigonometric series, following a PhD in number theory. Two years later, at the age of 27 , he wrote a paper on the subject, in particular on the question of unique representation of functions in such series. He found that in this research he needed a proper understanding of the real numbers, which was then lacking. The result was his now well known representation of the reals as Cauchy (fundamental) sequences. The latter entailed an encounter with the actual infinite, for a Cau fhy sequence is in innite collection of ration numbers satisfying given conditior a Cauchy sequence is an infinite collection of rational numbers satisfying given conditions. While previously opposed to the notion of a completed infinity (as was everyone else), Cantor soo realiz $\frac{1}{}$. He set aside h work on trigonometric series to devote transfinite set theory. Here are some of his thoughts on the matter [4, p. 211]:
" It is traditional to regard the infinite as the indefinitely growing or in the closely related form of a convergent sequence, which it acquired during the seventeenth century. As against this I conceive the infinite in the definite form of something consummated, something capable not only of mathematical formulation, but of definition by number. This conception of the infinite is opposed to traditions which have grown dear to me, and it is much against my own will that I have been forced to accept this view. But many years of scientific speculation and trial point to these conclusions as to a logical necessity, and for this reason I am confident that no valid objection could be raised which I would not be in position to meet.

†セயлә」 $\varepsilon^{\prime \prime} \varepsilon$

лоұиеј әлоғәя て＇6

The work of Fermat and Descartes had different emphases. While Descartes stressed the fact that curves can be represented by equations, Fermat's point of departure was that indeterminate equations give rise to curves. He showed that equations of the first degree with two variables describe straight lines, and he carefully analyzed equations of the second degree with two variables, showing that they represent various conic sections. Although he did not conside equations of degree higher than two, he clearly recognized the potential of the subject he was dealing with to produce new curves, as is evident from his statement that "the species of curve re indefinite in number: circle, parabola, hyperbola, ellipse, etc." [3, p. 79].

3.4 Descartes' and Fermat's Works from a Modern Perspective

Although the analytic geometry of Descartes and Fermat was groundbreaking, it was not in the form now familiar to us. In particular:
(a) Remarkably, a rectangular coordinate system and formulas for distance and slope are missing. In fact, coordinate axes are not explicitly set forth. Only the horizontal axis appears explicitly in drawings, while the implicit vertical axis is usually oblique.
(b) The unknowns x and y which appear in the equation of a curve were considered to be line segments rather than numbers. It was not until a century or more later that coordinates began to be viewed as numbers. The notion of a one-one correspondence between points in a plane and ordered pairs of real numbers, nowadays the basis of our formulation of analytic geometry, was foreign to Fermat and Descartes.
(c) Descartes considered only curves whose equations are "algebraic" (that is, polynomials in x and y). Transcendental curves, such as $y=\log x, y=\sin x$, and $y=e^{x}$, did not come under the scope of his general method. Fermat, as we noted, confined himself essentially to polynomial equations of degree two in x and y. (In another work, Fermat also considered the so-called higher parabolas and hyperbolas, $y=x^{n}$ and $y=x^{-n}$, respectively.)
(d) Curve-sketching in the sense familiar to us was not a central aspect of the analytic geometry of Fermat and Descartes. Fermat emphasized the study of equations in x and y not via their graphical representation but via their properties as derived by the methods of calculus. Descartes (we recall) did not regard the equation of a curve as an adequate definition of the curve.
(e) Both Descartes and Fermat used only positive coordinates, and such curves as were sketched appeared only in the first quadrant. Negative numbers were not a commonly acceptable part of the number system. Moreover, since Descartes' objective, and to a large extent Fermat's, was to solve geometric problems, the need for negative coordinates did not arise.

At first the geometry of Descartes and Fermat was accessible only to a very small circle of the ablest mathematicians. The latter did not take kindly and quickly to the idea of algebra, conceived as a collection of formulas and rules of manipulation, playing the dominant role in the rigorous, axiomatic, venerable field of geometry. It is only with Gaspard Monge and Lacroix in the latter part of the eighteenth century that we find analytic geometry essentially as it appear in today's textbooks. In the intervening years, analytic geometry was developed by, among oth ers, Leibniz, who introduced transcendental curves into the study of geometry; Newton, who used negative coordinates freely, sketched curves from their equations, and introduced various

The Infinite: From Potential to Actual

H. Grant, I. Kleiner, Turning Points in the History of Mathematics, Compact Textbooks in
Mathematics, DO1 10.1007/978-1-4939-3264-1_9, © Springer Science+Business Media, LLC 2015

David Hilbert, arguably the greatest mathematician of the first half of the twentieth century voiced memorably the fascination and challenge of the mathematical infinite [11, p. vii]:
" The infinite! No other question has ever moved so profoundly the spirit of man; no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite.

The Greeks
The challenges loomed early in the history of Greek mathematics. Consider the attempt by Democritus to calculate the volume of a cone by regarding it as composed of thin slices paralle to its base. If the number of slices is finite, and the thickness of each slice is nonzero, then the surface of the cone will appear "stepped", not smooth-which implies that the true volume is somehow a sum of infinitely many zeroes (see for example [3], pp. 79-81). The four famou paradoxes of Zeno (ca 450 BC), which probably aimed to support the claim of his teacher Parmenides that motion is impossible, are no less perplexing. In the "Dichotomy", for example, Zeno argues that to move from point A to point B, one must first get halfway to B, then halfway to the remaining distance, and so on. Assuming that space, and in particular the line segment AB , is infinitely divisible, it follows that one must cover infinitely many steps in finite time. But, Zeno claims, this is clearly impossible-so motion is impossible.
Among the ancient Greek thinkers it was Aristotle who considered the infinite most deep ly. He concluded that any geometrical magnitude, such as a line segment, is infinitely divis ible, for (he said) the idea of a minimum magnitude makes no sense. Similarly, the set of numbers-which for Aristotle included only the natural numbers $1,2,3, \ldots$-can clearly be extended as far as we please. Time has both of these properties: it extends without limit, an any portion of it can be divided without limit. These Aristotelian views were shaped by con siderations outside mathematics, for example the great philosopher's belief that time can have neither a beginning nor an end.

But Aristotle went further, to a fundamental distinction of great importance. He held, for example, that although we can push the set of natural numbers arbitrarily far, we cannot gras their totality as a single entity. This difference between the "potential" infinite and the "actual infinite appears also in geometry, where, Aristotle urged, a straight line cannot be infinite but mathematician can extend it as far as he/she needs or pleases. This avoidance of "actual" infinities undoubtedly reflects the close tie of Greek thought to the physical world-where of course we do not experience the infinite. See [1].

$1 \quad \boldsymbol{s}$

ε
$\varepsilon \tau$

24 Chapter 3. Analytic Geometry: From the Marriage of Two Fields to the Birth of a Third
" [Analytic geometry] gave our imagination 'two ends'-an algebraic one and a geometric one; geometric insight could often be translated into an algebraic one, and vice versa.

Morris Hirsch (1933-), another prominent mathematician, was more specific [8, p. 604]:
" If geometry lets us see what we are thinking about, algebra enables us to talk precisely about what we see, and above all to calculate. Moreover, it tends to organize our calculations and to conceptualize them; this, in turn, can lead to further geometrical construction and algebraic calculation.

Linear algebra is another excellent example of the interplay of algebra and geometry. For instance, the algebraic formulation of dimension makes natural the extension to dimensions higher than three. On the other hand, speaking about "lines" and "planes" in dimensions higher than three makes the subject more intuitive, suggestive, and comprehensible
Analytic geometry-a bridge between algebra and geometry-also provides bridges be ween shape and quantity, number and form, the analytic and the synthetic, the discrete and the continuous. For, as was shown in the nineteenth century, the real numbers can be built up rigorously from the integers, and since the one-one correspondence between the real number and the points on a line is at the root of analytic geometry, this establishes a bridge between the ond the points a discrete. This correspondence-this tension-has been most fruitful in th
 development of mathematics. Hermann Weyl, one of the foremost mathematicians of the first which is given by our spatial intuition and something that is constructed in a purely logicoconceptual way" [5, p. 159]
In the twentieth century such bridge-building became enormously important, offering pow erful tools to mathematicians. As examples, consider the following disciplines, which by merg ing two fields lent strength to each: analytic number theory, differential topology, geometric number theory, algebraic topology, algebraic number theory, differential geometry, and algebraic geometry. A grand synthesis-the Langlands Program-relating several areas of mathematics, in particular number theory, algebra, and analysis, was proposed by Robert Langlands (1936-) in the 1960 s in a series of deep and far-reaching conjectures, some by now established [6].

Problems and Projects

1. Discuss the thesis, advocated by some historians, that the Greeks invented analytic geometry. Consult $[2,3,9,11]$
What is the origin of the words "ellipse", "hyperbola, and "parabola"? See [2, 3, 9, 11].
2. How did Descartes solve the four-line locus problem of Pappus? See [2, 7, 9].
3. Discuss the coordinate systems (such as they were) of Descartes and Fermat. See [2, 3, 4, 9, 11, 12].
4. Descartes' geometry contains much on the theory of equations, especially in the third of the book's three chapters. Describe it. See $[2,7,9,11]$.
5. Write a brief biography of either Descartes or Fermat.
6. Describe the principles, as outlined in Descartes' major work in philosophy, Discourse on Method, which were based on his general method of acquiring knowledge. See [2, 3, 7, 9].
7. Discuss some contributions to analytic geometry of the successors of Fermat and Descartes. See $[2,3,9,11]$.

72 Chapter 8 • Hypercomplex Numbers: From Algebra to Algebras
2. (i) Define the product of quaternions, represented as quadruples $a+b i+c j+d k$, and show that every nonzero quaternion has an inverse.
(ii) Show that K (the octonions) are not associative.
3. (i) Students with some background in abstract algebra may find it interesting to show that the only n -tuples of reals that form associative division algebras are the real numbers, the complex numbers, and the quaternions (see $[3,6]$).
(ii) There is an "elementary" proof which shows that, for odd n , a division algebra of n tuples of reals is possible only for $\mathrm{n}=1$ (see [3, p. 190]).
4. (i) There is an important product defined on triples of reals, namely the vector product: $\left(a_{1} i+a_{2} j+a_{3} k\right) \times\left(b_{1} i+b_{2} j+b_{3} k\right)=\left(a_{2} b_{3}-a_{3} b_{2}\right) i+\left(a_{3} b_{1}-a_{1} b_{3}\right) j+\left(a_{1} b_{2}-a_{2} b_{1}\right) k$. Show that the vector product (\times), the quaternion product $(*)$, and the scalar (inner) product (.) of 3-dimensional vectors are related: $\alpha \times \beta=\alpha^{*} \beta+\alpha \cdot \beta[2,6]$. The only other Euclidean n-space in which a "cross product" can be defined is the space with $n=7$ [7].
(ii) The historian of mathematics Michael Crowe argues that the quaternions were instrumental in the creation of vector analysis. Vector analysts and quaternionists were at loggerheads during the second half of the nineteenth century about the preferable way to deal with problems in physics. Write an essay discussing this issue (see [2, 6]).
5. Defining "integral quaternions" and using ideas from number theory (unique factorization), one can prove Lagrange's theorem that every positive integer is a sum of four squares (of integers). Outline the ideas involved in such a proof (see [3,5]).
6. Write a brief account of the life and work of Hamilton (see [2, 3, 4]).
7. The quaternions and the octonions are (hypercomplex) "numbers" - and of course the integers, rationals, reals, and complex numbers are numbers. Are the polynomials (over the reals, say) numbers? The integers modulo m ? What might (some of) these "numbers" have in common? What is a "number", anyway? Research this topic.

References

. Cooke, R.: Classical Algebra: Its Nature, Origins, and Uses. Wiley, Hoboken (2008)
2. Crowe, M.J.: A History of Vector Analysis. University of Notre Dame Press, Notre Dame (1967)

Hankins TL. Sir William Rowan Hamilton The Johns Hork (1990)
Herstein I.N. Topics in Algebra. Blaisdell Publishing Co New Yo iversity Press, Baltimore (1980)
6. Kantor, IL... Solodovnikov, A.S.: Hypercomplex Numbers: An Elementary Introduction to Algebras. SpringerVerlag, New York (1989) (Translated from the Russian by A. Shenitzer.)
7. Massey, W.: Cross products of vectors in higher dimensional euclidean spaces. Am. Math. Mon. 90, 697-701 (1983)

Niven, I.: Equations in quaternions. Am. Math. Mon. 48, 654-661 (1941)
10. Poincaré, H.: Poincaré's review of Hilbert's foundations of geometry. Bull. Am. Math. Soc. 37, $77-78$ (1999) (Reprinted)

1. van der Waerden B.L.: Hamilton's discovery of quaternions. Math. Mag. 49, 227-234 (1976)
2. Wussing, H.:The Genesis of the Abstract Group Concept. MIT Press, Cambridge (1984) (Translated from the German by A. Shenitzer.
suọ̣еnba โе!

stoz!ord pue swoiqord

- R 8opodot

 чң әлеч әМ әапा!

Probability: From Games of Chance to an Abstract Theory
H. Grant, I. Kleiner, Turning Points in the History of Mathematic, Compact Textbooks in Mathematics, DOI 10.1007/978-1-49939-3264-1_4, © Springer Science+Business Media, LLC 2015

4.1 The Pascal-Fermat Correspondence

Probability, like various other mathematical concepts and theories, emerged from the desire to solve real-world problems-in this case, to provide a mathematical framework for games of chance and for gambling. One must of course distinguish between "probability" as a concept and "probability" as a subject. We have occasionally used "probability theory" for the latter term. Normally "probability" is used for both concept and theory, the context making clear which is intended.
Gambling is a long-standing activity, going back over three thousand years and engaged in by all civilizations. But the mathematical analysis of gambling, leading to the advent of prob ability, is of relatively recent origin. It began with Blaise Pascal and Pierre de Fermat. Around 1653 Pascal was approached by Antoine Gombauld, Chevalier de Méré (1607-1684)-a man of letters with a considerable knowledge of mathematics-to help him solve two gaming problems. Many writers say the request was made to improve de Mérés gambling chances [3, p. 84] Oysten Ore disputes that claim [14]

The two problems came to be known as the "Dice Problem" and the "Division Problem", the atter also known as the "Problem of Points".

The Dice Problem: How many throws of two dice are needed in order to have a better-thaneven chance of getting two sixes?

The Division Problem: What is a fair distribution of stakes in a game interrupted before its conclusion?
The Dice Problem is much the simpler of the two. It was solved in the mid-sixteenth century by Girolamo Cardano, among others, using plausibility arguments. Cardano, called "The Gambling Scholar" by Ore [13], was a colorful figure. A physician and mathematician by profession, he was also a practicing astrologer and an inveterate gambler, who composed "a learned book on games and ways to win in gambling" [13, p. viii], entitled The Book on Games of Chance [13] His most influential work, The Great Art, dealing with the solution of the cubic and quartic equations by radicals, was a fundamental contribution to mathematics (see \downarrow Chapter 2).

The Division Problem presents a much greater challenge. Among the first to introduce it was the Italian mathematician Luca Pacioli, in his 1494 book Everything About Arithmetic, Ge ometry, and Proportions, better known as Suma. Here is his version of the problem [10, p. 489]
" Two players are playing a fair game [the players are equally capable] that was to continue until one player had won six rounds. The game stops when the first player has won five round and the second player three. How should the stakes be divided between the two players?

William Rowan Hamilton (1805-1865)

both events were radical departures from existing conceptions, and both led to fundamental developments in their respective fields.

8.4 Beyond the Quaternions

Like all revolutions, this one was not universally acclaimed. For example, John Graves, Ham ilton's mathematician friend, said of the quaternions: "I have not yet any clear views as to the extent to which we are at liberty arbitrarily to create imaginaries [referring presumably to the $\mathrm{i}, \mathrm{j}, \mathrm{k}$, and to endow them with supernatural properties" $[2, \mathrm{p} .34]$. But most mathematicians, including Graves, quickly came around to Hamilton's point of view. His quaternions served as a catalyst for the exploration of diverse "number systems" with properties which differed in various ways from those of the real and complex numbers.
First and foremost among such systems were the "octonions" or "Cayley numbers", dis covered independently by Graves and by Arthur Cayley very soon after the discovery of the quaternions. These are 8 -tuples of reals, containing the quaternions, which form a division algebra K. It is instructive to view K in the following manner:
Note first that the quaternions can be viewed as pairs of complex numbers: $a+b i+c j+d k$ $=(a+b i)+(c+d i) j=w+z j$, where $w, z \in C, j^{2}=-1$. Now define multiplication of these pairs: $\left(w_{1}+z_{1} j\right)\left(w_{2}+z_{2} j\right)=\left(w_{1} w_{2}-z_{2}{ }^{*} z_{1}\right)+\left(z_{1} w_{2}{ }^{*}+z_{2} w_{1}\right) j$, where z^{*} denotes the conjugate of z. (It is important to have the w_{i} and z_{i} above in precisely this order.) Verify that the product thus defined is the same as the usual product of quaternions given in terms of i, j, and k. These pairs of complex numbers are therefore the elements of \mathbf{H}.
Let now $K=\{\alpha+\beta$ e: $\alpha, \beta \in H\}$, where e is an arbitrary unit with $\mathrm{e}^{2}=-1$. Define a product in K as follows: $\left(\alpha_{1}+\beta_{1} e\right)\left(\alpha_{2}+\beta_{2} e\right)=\left(\alpha_{1} \alpha_{2}-\beta_{2}{ }^{*} \beta_{1}\right)+\left(\beta_{1} \alpha_{2}{ }^{*}+\beta_{2} \alpha_{1}\right) e$ (see the definition above of the product in H ; the conjugate α^{*} of the quaternion $\alpha=\mathrm{a}+\mathrm{bi}+\mathrm{cj}+\mathrm{dk}$ is $\left.\mathrm{a}-\mathrm{bi}-\mathrm{cj}-\mathrm{dk}\right)$. These ar the "octonions". They can be viewed of course as 8 -tuples of reals. Since \mathbf{K} contains \mathbf{H}, it is clearly noncommutative. But it is also nonassociative, that is, there are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in K for which $\mathrm{a}(\mathrm{bc}) \neq(\mathrm{ab})$ c; for example, (ij)e $\neq \mathrm{i}(\mathrm{je})$. K , however, is "alternative", that is, $(\mathrm{xy}) \mathrm{y}=\mathrm{x}(\mathrm{yy})$ and $\mathrm{y}(\mathrm{yx})=(\mathrm{yy}) \mathrm{x}$ for all x, y in \mathbf{K} (see [6]).

 yp $+\mathfrak{\varphi}+!q+e$ sədnupenb

 кәчъ-І- = צ !

 \title{

}
 \title{

}

Probability theory followed a similar route. Mathematicians knew very well what "probability" meant without having to define the concept, and they put the ideas of probability theory to excellent use in the eighteenth and nineteenth centuries without having a formal structure of the subject, which was introduced in the early twentieth century.

4.2 Huygens: The First Book on Probability

Christiaan Huygens was a first-rate Dutch mathematician, physicist, astronomer, and inventor (Most mathematicians in the seventeenth and eighteenth centuries were also scientists.) He studied mathematics and law at the University of Leiden. On a visit to Paris in 1655 he became acquainted with the Problem of Points, though not with its solution. Taken with the problem, he promptly solved it. But he realized that one was dealing here with important ideas beyond the solution of problems. So he decided to write a book which would give expression to this broader point of view [9, p. 65]:
» I would like to believe that if someone studies these things a little more closely, then he will almost certainly come to the conclusion that it is not just a game which has been treated here, but that the principles and the foundations are laid of a very nice and very deep speculation.

The result of these speculations was a sixteen-page treatise titled On Reckoning at Games of Chance, published in 1657. Here is how a historian of the subject, Florence Nightingale David (1909-1993), saw this work [3, p. 110] (but see [5, p. 138 ff .] for a contrary view):
at about the same time by William Rowan Hamilton, was whether one can enlarge the number system beyond the complex numbers [4]. Both problems were among a select few that gave rise in the late decades of the nineteenth century and the early decades of the twentieth century to what has come to be known as "abstract algebra" [1]. We will consider in this chapter the second question: are there numbers beyond the complex numbers? To provide a context we must first discuss Hamilton's work on complex numbers.

8.2 Hamilton and Complex Numbers

The complex numbers were conceived by the Renaissance mathematician Rafael Bombelli and expounded in his book Algebra of 1572. The motivation for their introduction was the desire to solve polynomial equations, in particular the cubic. It took another two and a half centuries, and the imprimatur of Gauss, who in 1831 gave their geometric representation as points (or vectors) in the plane, to have them accepted as bona fide mathematical entities Similar geometric representations of complex numbers were given by Caspar Wessel in 1797 and by Jean Robert Argand in 1806, among others, but their work went largely unnoticed (see \downarrow Chapter 2).
Hamilton was the greatest Irish mathematician. He was a precocious child, who at the age of thirteen knew (besides English) thirteen languages: Greek, Latin, Hebrew, Syriac, Persian, Arabic, Sanskrit, Hindustani, Malay, French, Italian, Spanish, and German. Aside from lan guages, he studied geography, religion, literature, astronomy, and mathematics. He read Euclid in Greek, Newton in Latin, and Laplace in French. At seventeen he found an error in the latter's renowned Mécanique Céleste.
Hamilton made outstanding contributions in optics, dynamics, and algebra. His interest in algebra was aroused around 1826 by his mathematician friend John Graves. Hamilton was dissatisfied with the geometric representation of complex numbers given by Gauss and others. After all, he observed, these are numbers, which he believed to be the domain of algebra. He objected in particular to the dependence of a geometric representation of complex numbers on a coordinate system. He was also unhappy with their representation as expressions of the form $\mathrm{a}+\mathrm{bi}$ (which Gauss, among others, had used). It seemed to him that adding bi to a was like adding oranges to apples. And what in any case is i, he asked?

These misgivings prompted Hamilton to define (in 1837) complex numbers as ordered pairs of reals. He defined, in the way that we still do, the four algebraic operations on pairs, and showed that under these operations the ordered number-couples come close to satisfying the laws of what we now call a field: they obey the closure laws and the commutative and distributive laws (he introduced the associative law a decade later in his work on quaternions); moreover, these pairs possess additive and multiplicative inverses, and they include a zero element.

This was a substantial conceptual advancement in algebra, given that in the mid-1820s the subject consisted largely of rules for the manipulation of algebraic expressions, especially those involving negative and complex numbers, and the solution of polynomial equations. Note, for example, that in Hamilton's version of complex numbers the "mysterious" i is just the "ordi nary" pair $(0,1)$.

 јо ио!̣n

suọ

गโृел

influenced by Huygens' book.) There are also solutions of the five problems which Huygens left as exercises. Part II contains a systematic account of "the doctrine of permutations and combinations", as Bernoulli called it, including what came to be known as the Bernoulli numbers [5]; and Part III applies the previous work to solve a series of games more challenging than those considered in Huygens' treatise. It was in Part IV, however, that Bernoulli made a fundamental advance in the subject by stating and proving a "Law of Large Numbers"-the first limit theo rem of probability theory. He called it the "Golden Theorem" and considered the result a greater accomplishment than if he had shown how to square a circle. In the twentieth century, when stronger versions of Bernoulli's theorem had been proved, his result came to be known as the "Weak Law of Large Numbers".

Roughly, Bernoulli's Law of Large Numbers enables us to determine experimentally the probability of an event whose a priori probability is not known. For example, if there is an unknown number of black and white pebbles in an urn, the probability of drawing a white pebble from the urn can only be determined experimentally-by sampling. Thus, if in n identical trials an event occurs m times, and if n is very large, then m / n should be near the actual-a prioriprobability of the event, and should get closer and closer to that probability as n gets large and larger. See [9] for a precise mathematical statement of Bernoulli's Law of Large Numbers.
Bernoulli saw as the most important aspect of his book the application of his Law of Large Numbers to practical problems in civil, moral, and economic contexts. Eventually he ran ou of time (it took him about twenty years to compose the Ars Conjectandi), and the task was leff to his successors; but with his work probability began to make inroads into statistics, a process which greatly intensified over the next two centuries and more, resulting in an inseparable marriage of the two disciplines, which has become indispensable in many walks of life. We mentioned earlier that Bernoulli was the first to define and use the concept of probability. Here is his definition [2, p. 89]:
" Probability ... is degree of certainty, and differs from the latter as a part differs from the whole.... One thing ... is called more probable ... than another if it has a larger part of certainty, even though in ordinary speech a thing is called probable only if its probability notably exceed one-half of certainty. I say notably, for what equals approximately half of certainty is called doubtful or undecided.

This is not very enlightening as a working definition, as it leaves unanswered the question of how to compute probabilities. Nevertheless, "Bernoulli's Ars Conjectandi ... deserves to be

66 Chapter 7 • Noneuclidean Geometry: From One Geometry to Many

References

Artmann, B.: Euclid-the Creation of Mathematics. Springer, New York (1999)
2. Bell, E.T.: Men of Mathematics. Simon and Schuster, New York (1937)
3. Davis P.J., Hersh R., Marchisotto E.A.: The Mathematical Experience, Study Edition. Birkhäuser (1995).
(orig. 1981)
. Euclid:The Thirteen Books of Euclid's Elements, Translated, with extensive commentary, T. L. Heath. Dover, New York (1956)
5. Gans D.: An Introduction to NonEuclidean Geometry. Academic, New York (1973)
6. Gray J.:I Ideas of Space: Euclidean, Non-Euclidean, and Relativistic, 2nd edn.., Oxford University Press, New York (1989)
7. Gray J.: Worlds Out of Nothing: A Course in the History of Geometry in the 19th Century. Springer, New York

Greenberg M.J.: Euclidean and Non-Euclidean Geometries: Development and History, 4th edn. W. H.
Freeman, New York (1981)
9. Kline M.: Mathematical Thought from Ancient to Modern Times. Oxford University Press, New York (1972)
10. Laugwitz D.: Bernhard Riemann, 1826-1866. Birkhäuser, New York (2008). (Translated by A. Shenitzer)
11. Meschkowski H.: Noneuclidean Geometry. Academic, New York (1964). (Translated by A. Shenitzer.)
12. Niven I.The roots of a quaternion. Am. Math. Mon. 49, 386-388 (1942)
14. Wigner E.P.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13, 1-14 (1960)
15. Wolfe H.E.: Introduction to Non-Euclidean Geometry. Holt, Rinehart \& Winston, Austen (1945)
16. Yandell B.H.: The Honors Class: Hilbert's Problems and Their Solvers. A K Peters, Natick (2002)

Further Reading
7. Browder F.E.: Does pure mathematics have a relation to the sciences? Am. Sci. 64,542-49 (1976)
8. Dyson F.J.: Mathematics in the physical sciences. Sci. Am. 211, 129-46 (1964)
9. Eves H.: Great Moments in Mathematics (after 1650). Mathematical Association of America, Washington DC (1981)
20. Hadamard J.: The Psychology of Invention in the Mathematical Field. Dover, New York (1954)

-[sı ‘8] วəડ

-[0I-9] әәऽ

 słวə!odd pue swəiqo.

(5661-2061) дəиб! М әиә6nヨ

This definition was acceptable in the nineteenth century but is not satisfactory from a modern perspective; in particular, it does not accommodate infinite probability spaces.

4.6

Philosophy of Probability

We note that the several definitions of probability which we have given are rather wordy and seem less than satisfactory. In fact, as the historian Anders Hald asserts, "the concept of prob ability is an ambiguous one. It has gradually changed content, and at present it has many meanings [for example, objective and subjective probability; but see the next section], in particular in the philosophical literature" [9, p. 28].
So what is the nature of probability? Where did it come from? How do we describe/define it? These are largely philosophical questions, and they have been of concern mainly to philosophers. That is not surprising, since of course probability is closely connected to ideas such as causality and determinism. (Laplace too, in his Philosophical Essay, reflects on philosophical issues; see for example his Chapter IV, titled "Concerning Hope" [12].) Moreover, to make sense of the immense development of probability and its applications in the twentieth century philosophers have introduced a number of "theories" of the subject, among them the classical theory, the logical theory, the subjective theory, the frequency theory, and the propensity theory [7].

4.7 Probability as an Axiomatic Theory

A number of outstanding mathematicians, among them Poisson, Gauss, Chebyshev, Markov Bertrand, and Poincaré, made fundamental contributions to probability in the nineteenth cen tury. Moreover, the subject had significant applications in the physical and social sciences But it lacked foundations and was considered, according to Rényi, "a problematic discipline between mathematics and physics or philosophy" [15, p. 71]. Only in the early twentieth century did it begin to gain acceptance as a respectable branch of pure mathematics.

Bernhard Riemann (1826-1866)

(f) Why is mathematics useful?

For two thousand years, mathematics and the physical world were closely connected, the for mer serving as a model for aspects of the latter. This intimate relationship was fractured in the nineteenth century by the discovery of noneuclidean geometry. In particular, mathematical pace and physical space became two distinct entities, with no evident connection between pace
.
Yet a tight linkage between mathematics and the physical world does exist. Mathematics abounds with examples of results and theories which were introduced without any thought of application yet which subsequently-a decade, a century, or a millennium later-turned out to be extremely useful. For example, matrices were introduced by Cayley in the 1850s simply a a useful algebraic notation, yet decades later they turned out to have numerous weighty uses Another example: conic sections were introduced in ancient Greece to solve problems in pure mathematics but were used two thousand years later by Kepler in astronomy and by Galileo in mechanics. For a third example we cite Albert Einstein, who needed a Riemannian (noneuclidean) geometry, introduced in the 1850s, to formulate his theory of general relativity (in 1916).
How do we explain that "tight linkage" between mathematics and the physical world? The philosopher and mathematician Alfred North Whitehead found it paradoxical [9, p. 466]:
" The paradox is now fully established that the utmost abstractions are the true weapons with which to control our thought of concrete fact.

The Nobel Prize winner Eugene Wigner spoke famously of "the unreasonable effectiveness of mathematics in the natural sciences" [14, pp. 2, 7, 14]:
" The enormous usefulness of mathematics in the natural sciences is something bordering on the mysterious and there is no rational explanation for it. ...The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonder ful gift which we neither understand nor deserve. ...[lt is] quite comparable in its striking nature to the miracle that the human mind can string a thousand arguments together without getting itself into contradictions or to the two miracles of the existence of laws of nature and of the human mind's capacity to divine them.

－［saseydua

uo！snjunos 8

$\mathrm{I}=(\mathrm{B}) \mathrm{d} \cdot \varepsilon$
」ヨョ て

$$
:[\tau \cdot d \text { 'II }] \text { səəed }
$$

цџпน วиұрру（ә）

¿Кирәшог尺̊ әл！

Problems and Projects

1. Discuss the life and work of a mathematician encountered in this chapter who especially appealed to you.
2. Discuss Pascal's "Wager" concerning the existence of God. See $[3,4,8,9]$.
3. Discuss two or three paradoxes of probability theory.
4. Write a brief essay on John Graunt and his Mortality Tables. See [4, 9].
5. Write an essay on Pascal's Treatise on the Arithmetical Triangle. See $[5,6,9]$.
6. Discuss some of Cardano's work in probability. See [8, 13, 14].
7. Give a numerical example of the Division Problem and explain how you would solve it See $[1,4,5,9,10]$.
8. Discuss aspects of the philosophy of probability. See [8, 9, 17].

References

. Berlinghoff, W.P., Gouvèa, F.Q.: Mat edition. Mathematical Association of America, Washington DC (2004)
. Bernoulli, J.:The Art of Conjecturing (Ars Conjectandi), The Johns Hopkins University Press, Baltimore (2006). (Translated from the Latin (1713), with an introduction and notes, by E. D. Sylla
David, F.N.: Games, Gods, and Gambling. Hafner (1962)
4. Devlin, K.: The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that Made the World Modern. Basic Books, New York (2008)
. Eves, H.: Great Moments in Mathematics (1) Trgle. Oxford University Press, Oxford (1987)
7. Eves, H... Great Mo Gillis, D.: Philosophical Theories of Probabilit 1650). Mathematical Association of America (1981)
. Hacking, I.: The Emergence of Probability: A Phil
and Statistical Inference. Cambridge University Press, Cambridge (1975)
. Hald, A.. Hstory of Probability and Statistics and Their Applications Before 1750 . Wiley, Hoboken (20
10. Katz, V.: A History of Mathematics: An Introduction, 3rd edn. Addison-Wesley, Boston (2009)
12. Laplace, P.S.:. A Philosophical Essay on Probabilities, Translated from the 6th French edn. Dover, Addiso Wesley, Boston (1951) (orig. 1819)
Ore, O.: Cardano, The Gambling Scholar. Dover, New York (1965)
14. Ore, O.: Pascal and the invention of probability theory. Amer. Math. Mon. 67, 409-419 (1960)
15. Rényi, A.: Letters on Probability. Wayne State University Press, Detroit (1972)
16. Todhunter, L.: A History of the Mathematical Theory of Probability from the Time of Pascal to that of La
place. Chelsea (1949) (orig. 1865) place. Chelsea (1949) (orig. 1865)
. Von Mises, R. Probability, Statistics and Truth. Dover New York (195)

Further Reading

18. Edwards, C.H.:The Historical Development of the Calculus. Springer, New York (1979)
19. Mahoney, M.: The Mathematical Career of Pierre de Fermat, 2nd edn. Princeton University Press, Princeton (1994)
20. Stigler, S.M. Statistics on the Table Press, Harvard, Cambridge (1999)
geometry. Riemann defined a new type of noneuclidean geometry, called "elliptic geometry" in which there are no parallel lines and the sum of the angles of a triangle is greater than 180° In fact, he introduced an infinite number of noneuclidean geometries, of arbitrary dimension, now known as Riemannian. One of the many ideas in his remarkable paper was the use of differential methods in noneuclidean geometry. Somewhat later, Arthur Cayley and Felix Klein obtained euclidean and noneuclidean geometry (both hyperbolic and elliptic) as subgeom etries of projective geometry. Thus did noneuclidean geometry acquire firmer foundations and enter the mainstream of mathematics. Geometry flowered in the nineteenth century! See [7].

7.5 Some Implications of the Creation of Noneuclidean Geometry

We consider a number of major issues arising from the discovery of noneuclidean geometry. At the Second International Congress of Mathematicians in Paris in 1900, in a talk on Mathematical Problems, David Hilbert referred to that breakthrough as one of the two "most suggestive and notable achievements of the [nineteenth] century" in the field he called "the principles of analysis and geometry" (the other being "the arithmetical formulation of the concept of the continuum") [16, p. 395].
a) Consistency

We have described two noneuclidean geometries, hyperbolic and elliptic, which were devel oped on the basis of sets of axioms differing in some respects from those of euclidean geometry But are we at liberty to propose an arbitrary set of axioms and proceed to create a discipline whose content is the set of logical consequences of those axioms? Yes, but only if the chosen xioms are consistent-that is, do not lead to a contradiction.

The creators of noneuclidean geometry felt confident about the consistency of their axims , having derived a large body of theorems without arriving at a contradiction and having noted that past generations had failed to prove Euclid's P5. But convincing as such evidence was, it did not (of course) constitute a formal proof of consistency of the given geometry. To prove consistency, mathematicians devised the notion of a "model" of a geometry [8]. By contructing a euclidean model of noneuclidean geometry, they showed the relative consistency of noneuclidean geometry-namely, that this geometry is consistent if euclidean geometry is. Subsequently it was shown that euclidean geometry is consistent if noneuclidean geometry is. This established the relative consistency of one geometry with respect to the other. See [8]
(b) Euclid is finally vindicated

The consistency of hyperbolic geometry at last settled the two thousand-year-old question con cerning a proof of Euclid's fifth postulate. It showed the impossibility of deducing the postulate from the remaining four postulates. For if that deduction were possible, P5 would be a theo rem also in hyperbolic geometry, since the first four postulates of euclidean geometry are also postulates of hyperbolic geometry. But then the fifth postulates of hyperbolic and euclidean geometry would both be results in hyperbolic geometry, which would yield the inconsistency of that geometry. Moreover, the (relative) consistency of euclidean geometry showed that the negation of P5 cannot be proved from the other four. This established that Euclid's P5 is, as we now say, independent of his other four postulates [15].

sә!̣!

sןелбәұuן pue sәл!ұел!ләа

the introduction of complex numbers, the rebirth of trigonometry, the establishment of a relationship between mathematics and the arts through perspective drawing, and a revolution in astronomy, later to prove of great significance for mathematics. A number of these developments were necessary prerequisites for the rise of calculus, as was the invention of analytic geometry by René Descartes and by Pierre de Fermat in the early decades of the seventeenth century (see $>$ Chapter 3).
The Renaissance also saw the full recovery and serious study of the mathematical works of the Greeks, especially Archimedes' masterpieces. His calculations of areas, volumes, and cen ters of gravity were an inspiration to many mathematicians of that period. Some went beyond Archimedes in attempting systematic calculations of the centers of gravity of solids. But they used the classical "method of exhaustion" of the Greeks, which was conducive neither to the discovery of results nor to the development of algorithms. The temper of the times was such discovery of results nor to the development of algorithms. The temper of the times mathere rectared that most mathematicians were far more interested in results than in proofs; rigor, declared
Bonaventura Cavalieri in the 1630s, "is the concern of philosophy and not of geometry [mathBonaventura Cavalieri in the 1630s, "is the concern of philosophy and not of geometry [math-
ematics]" [10, p. 383]. To obtain results, mathematicians devised new methods for the solution of calculus-type problems. These were based on geometric, algebraic, and arithmetic ideas, often in interplay. We give two examples.

- Cavalieri

A major tool for the investigation of calculus problems was the notion of an indivisible. This dea-in the form, for example, of an area as composed of a sum of infinitely many parallel ines, regarded as atomistic-was embodied in Greek physical theory and was also part of medieval scientific thought. Mathematicians of the seventeenth century fashioned indivisibles into a powerful tool for the investigation of area and volume problems.
Indivisibles were used in calculus by Galileo and others in the early seventeenth century, but it was Cavalieri who, in his influential Geometry of Indivisibles of 1635 , shaped a vague concept into a useful technique for the determination of areas and volumes. His strategy was to consider a geometric figure to be composed of an infinite number of indivisibles of lower dimension. Thus a surface consists of an infinite number of equally spaced parallel lines, and a solid of an infinite number of equally spaced parallel planes. The procedure for finding the area (or volume) of a figure is to compare it to a second figure of equal height (or width), whose area (or volume) is known, by setting up a one-to-one correspondence between the indivisible elements of the two figures and using "Cavalieri's Principle": if the corresponding indivisible elements are always in a given ratio, then the areas (or volumes) of the two figures are in the same ratio. For example, it is easy to show that the ordinates of the ellipse $\mathrm{x}^{2} / \mathrm{a}^{2}+\mathrm{y}^{2} / \mathrm{b}^{2}=1$ are to the corresponding ordinates of the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ in the ratio b:a (see $\boldsymbol{\square}$ Figure 5.1), hence the area of the ellipse $=(b / a) \times$ the area of the circle $=\pi a b$.

- Ferma

Fermat was the first to tackle systematically the problem of tangents. In the 1630s he devised a method for finding tangents to any polynomial curve. The following example illustrates his approach.

Suppose we wish to find the tangent to the parabola $\mathrm{y}=\mathrm{x}^{2}$ at some point $\left(\mathrm{x}, \mathrm{x}^{2}\right)$ on it. Let +e be a point on the x -axis and let s denote the "subtangent" to the curve at the point $\left(\mathrm{x}, \mathrm{x}^{2}\right)$ see Figure 5.2). Similarity of triangles yields $\mathrm{x}^{2} / \mathrm{s}=\mathrm{k} /(\mathrm{s}+\mathrm{e})$. Fermat notes that k is "adequal to $(\mathrm{x}+\mathrm{e})^{2}$, presumably meaning "as nearly equal as possible", although he does not say so Writing this as $\mathrm{k} \cong(\mathrm{x}+\mathrm{e})^{2}$, we get $\mathrm{x}^{2} / \mathrm{s} \cong(\mathrm{x}+\mathrm{e})^{2} /(\mathrm{s}+\mathrm{e})$. Solving for s we have $s \cong \mathrm{ex}^{2} /\left[(\mathrm{x}+\mathrm{e})^{2}\right.$

60 Chapter 7 • Noneuclidean Geometry: From One Geometry to Many
of a new-"noneuclidean"-geometry. Saccheri was on the verge of its discovery, but he would not-could not-accept his own results, because they contradicted propositions in euclidean geometry. This attitude was a barrier whose overcoming would require not a mathematical but a psychological breakthrough; and this Saccheri could not achieve. Perhaps, as Wolfgang Bolyai (the father of one of the inventors of noneuclidean geometry) claimed, "mathematical discoveries, like springtime violets in the woods, have their season which no human can hasten or retard" [2, p. 263].
7.4 The Discovery (Invention) of Noneuclidean Geometry

In 1763 a German student, G. S. Klügel, submitted a Ph.D. dissertation that found flaws in 28 different supposed proofs of the parallel postulate, and in 1766 Johann Lambert made further interesting discoveries along the lines of Saccheri. But the problem of the parallel postulate, still unresolved, was not at the centre of attention of eighteenth-century mathematics; the major concerns at the time were in analysis. It is only towards the beginning of the nineteenth entury that we witness a revival of interest in geometry. In this context, Ferdinand Schweikart解 eveloped "astral geometry in sedry in 826-both notable forerunners of noneuclid from Wolfgang Bolyai in the 1820s suggests that the dilemma posed by the parallel postulat till seemed far from resolved [11, p. 31]

It is unbelievable that this stubborn darkness, this eternal eclipse, this flaw in geometry, this eternal cloud on virgin truth can be endured.

The German Carl Friedrich Gauss, the Hungarian Janos Bolyai, and the Russian Nikolai Lobachevsky are considered the independent inventors of noneuclidean geometry, although Gauss did not publish his researches in this field. These three mathematicians were the first to develop-consciously and systematically-a new geometry, which they regarded as logially consistent, and whose theorems included many of the strange results arrived at in past enerations. Its point of departure was the acceptance of Euclids first four postulates but the replacement of the fifth by an opposed "parallel" postulate, namely that through a point not on a given line there is more than one line parallel to the given line. The body of theorems derived as logical consequences of these postulates came to be known as "noneuclidean geometry" (later as "hyperbolic geometry"). Here are some of those theorems

1. The sum of the angles of a triangle is less than 180°. It follows, in particular, that rectangles do not exist in this geometry.
2. The sum of the angles of a triangle varies with the area of the triangle-the larger the area, the smaller the angle sum.
Similar triangles are necessarily congruent
3. Two distinct lines cannot be equidistant.
4. A line may intersect one of two parallel lines without intersecting the other.
5. The ratio of the circumference to the diameter of a circle is larger than π. Moreover, the ratio increases as the area of the circle increases

 sәıр!

 - (Кıииә

 -(aV Kı引иә

40 Chapter 5. Calculus: From Tangents and Areas to Derivatives and Integrals

Figure 5.2 Finding the
tangent to a parabola

5.3 Newton and Leibniz: The Inventors of Calculus

In the first two thirds of the seventeenth century mathematicians solved calculus-type problems, but they lacked a general framework in which to place them. This was provided by New ton and Leibniz. Specifically, they
a. invented the general concepts of derivative and integral-though not in the form we see them today. For example, it is one thing to compute areas of curvilinear figures and vol umes of solids using ad hoc methods, but quite another to recognize that such problems can be subsumed under a single concept, namely the integral.
b. recognized differentiation and integration as inverse operations. Although several mathematicians before Newton and Leibniz noted the relation between tangent and area prob lems, mainly in specific cases, the clear and explicit recognition, in its complete generality, of what we now call the Fundamental Theorem of Calculus belongs to Newton and Leibniz.
c. devised a notation and developed algorithms to make calculus a powerful computational instrument.
d. extended the range of applicability of the methods of calculus. While in the past those methods were applied mainly to polynomials, often only of low degree, they were now applicable to "all" functions, algebraic and transcendental.

And now to some examples of the calculus as developed by Newton and by Leibniz. We should note that theirs is a calculus of variables-which Newton calls "fluents"-and equations relating these variables; it is not a calculus of functions. The notion of function as an explicit mathematical concept arose only in the early eighteenth century.

- Newton

Newton considered a curve to be "the locus of the intersection of two moving lines, one vertical and the other horizontal. The x and y coordinates of the moving points are then functions of the and the other horizontal. The x and y coordinates of the moving points are then functions of the
time t, specifying the locations of the vertical and horizontal lines respectively" [4, p. 193]. Newtime t, specifying the locations of the vertical and horizontal lines respectively" [4, p. 193]. New-
ton's basic concept is that of a "fluxion", denoted by $\dot{x} ;$ it is the instantaneous rate of change (inton's basic concept is that of a "fluxion", denoted by \dot{x}; it is the instantaneous rate of change (in-
stantaneous velocity) of the fluent x -in our notation, $\mathrm{dx} / \mathrm{dt}$. The instantaneous velocity is not stantaneous velocity) of the fluent x -in our notation, $\mathrm{dx} / \mathrm{dt}$. The instantaneous velocity is not
defined, but is taken as intuitively understood. Newton aims rather to show how to compute $\dot{\mathrm{x}}$.

Chapter 7 • Noneuclidean Geometry: From One Geometry to Many

Figure 7.1 Euclid's

be "an epoch-making statement" [15, p. 17]-was apparently singled out for special attention from earliest times: it took considerably longer to state than the other four, and was not nearly so self-evident. Euclid himself may have felt uneasy about this postulate, for his first use of it so self-evident. Euclid himself may have felt uneasy about this postulate, for his
This fifth postulate would play a large role in subsequent history, and so it appears often in he story that we tell below; for variety and brevity we shall sometimes refer to it as "P5".
Proclus, a Greek philosopher and mathematician whose works are among our main sources of information on Greek geometry, stated the dilemma thus in his Commentary on Euclid Elements [8, p. 210]:
) This [P5] ought even to be struck out of the Postulates altogether; for it is a statement involving many difficulties.... The statement that since the two lines converge more and more as they are produced will eventually meet is plausible but not necessary.

To substantiate the last statement, Proclus gave the example of a hyperbola and its asymptotes, and he consequently proposed the following [8, p 210$]$:
") It is then clear from this that we must seek a proof of the present theorem, and that it is alien to the special character of postulates.

7.3 Attempts to Prove the Fifth Postulate

Proclus himself offered such a proof
Let L_{3} be a line intersecting the lines L_{1} and L_{2} such that $\alpha+\beta<180^{\circ}$; we want to prove that L_{1} and L_{2} intersect (see $\mathbb{\square}$ Figure 7.2). Since $\alpha+\beta<180^{\circ}$, draw a line L_{4} through P (the point of intersection of L_{2} and L_{3}) such that $\alpha^{`}+\beta=180^{\circ}$. It follows that L_{4} and L_{2} are parallel. (This is Proposition 28 of Euclid's Elements; it is proved without the use of the fifth postulate P5.) Now Proclus argued that since L_{1} intersects L_{4} (namely at P), it must also intersect L_{2}, basing himself on the allegedly obvious fact that if a line intersects one of two parallel lines it must intersect the other. Thus L_{1} and L_{2} intersect, which completes the proof of P5

The problem with this proof is that while the statement "if a line intersects one of two parallel lines it must intersect the other" may be more self-evident than P5, the two are in fact

 ז्[оу!

- Figure 5.3 Leibniz' characteristic triangle
- Leibniz

Leibniz' ideas on calculus evolved gradually, and like Newton, he wrote several versions, giv ing expression to his ripening thoughts. Central to all of them is the concept of "differential" although that notion had different meanings for him at different times.
Leibniz viewed a "curve" as a polygon with infinitely many sides, each of infinitesima length. (Recall that the Greeks conceived a circle in just that way.) With such a curve is as sociated an infinite (discrete) sequence of abscissas $x_{1}, x_{2}, x_{3}, \ldots$, and an infinite sequence of rdinates $y_{1}, y_{2}, y_{3}, \ldots$, where $\left(x_{i}, y_{i}\right)$ are the coordinates of the points of the curve.
The difference between two successive values of x is called the "differential" of x and is denoted by dx; similarly for dy. The differential dx is a fixed nonzero quantity, infinitely smal in comparison with $\mathrm{x}-\mathrm{in}$ effect, an infinitesimal. There is a sequence of differentials associated with the curve, namely the sequence of differences $\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}$ associated with the abscissas $\mathrm{x}_{1}, \mathrm{x}_{2}$ x_{3}, \ldots of the curve [4, pp. 258, 261].
The sides of the polygon constituting the curve are denoted by ds-again, there are infi nitely many such infinitesimal ds's. This gives rise to Leibniz' famous "characteristic triangle" with infinitesimal sides dx, dy, ds satisfying the relation $(\mathrm{ds})^{2}=(\mathrm{dx})^{2}+(\mathrm{dy})^{2}($ see $\mathbf{\square}$ Figure 5.3$)$ The side ds of the curve (polygon) is taken as coincident with the tangent to the curve (at the point x). Leibniz put it thus [9, pp. 234-235]:

》 We have only to keep in mind that to find a tangent means to draw a line that connects two points of the curve at an infinitely small distance, or the continued side of a polygon with an infinite number of angles, which for us takes the place of the curve. This infinitely small distance can always be expressed by a known differential like ds.

The slope of the tangent to the curve at the point (x, y) is thus $\mathrm{dy} / \mathrm{dx}$-an actual quotient of dif ferentials, which Leibniz calls the "differential quotient" (0 Figure 5.3).
Here are two further examples of his calculus. To discover and "prove" the product rule for ifferentials, he proceeds as follows:
$d(x y)=(x+d x)(y+d y)-x y=x y+x d y+y d x+(d x)(d y)-x y=x d y+y d x$. He omits (dx)(dy), noting that it is "infinitely small in comparison with the rest" [4, p. 255].

As a second example, Leibniz finds the tangent at a point (x, y) to the conic $x^{2}+2 x y=5$ Replacing x and y by $\mathrm{x}+\mathrm{dx}$ and $\mathrm{y}+\mathrm{dy}$, respectively, and noting that ($\mathrm{x}+\mathrm{dx}, \mathrm{y}+\mathrm{dy}$) is a point on the conic "infinitely close" to (x, y), we get

$$
(x+d x)^{2}+2(x+d x)(y+d y)=5=x^{2}+2 x y .
$$

56 Chapter 6-Gaussian Integers: From Arithmetic to Arithmetics
. Write brief essays on the lives and work of two of Fermat, Euler, Gauss, Dedekind
. Show that $\mathrm{Z}_{-5}=\{a+b \sqrt{-5}: a, b \in Z\}$ is not a UFD. See $[1,16]$.
5. Determine all gaussian primes. See $[1,3,17]$.
6. Write a brief essay on Diophantus, addressing both his algebraic and number-theoretic work, and discussing his influence. See $[2,6,10]$.
7. Discuss Lagrange's solution of the Pell equation, $\mathrm{x}^{2}-\mathrm{dy}^{2}=1, \mathrm{~d}$ a positive integer, noting his use of "foreign objects" in number theory. See $[1,3,5,15]$
8. Write an essay on Bachet, Frenicle, and Mersenne, the scientists who were Fermat's correspondents.
9. Write an essay on the factorization of ideals in rings of integers of quadratic fields. See [1, 4, 5, 11, 13].
10. Discuss the law of quadratic reciprocity, and the law of biquadratic reciprocity. See $[1,7,17]$.

References

Adams, W.W., Goldstein, L...: Introductions to Number Theory. Prentice-Hall, Englewood Cliffs (1976)
Adams, W.W.,. Goldstein, L....I introductions to Number Theory. Prentice-Hall, Englewood Cliffs (1976)
Bashmakova, I.G.: Diophantus and Diophantine Equations (translated from the Russian by A. Shenitzer).
Mathematical Association of America, Washington DC (1997)
Edwards. HM. Fermat's Last Theorem. A Genetic Introduction to W. A. Benjamin, New York (1970) York (1977) (19) oldman,
Wellesley (1998)
. Heath, T.L.: Diophantus of Alexandria: A Study in the History of Greek Algebra, 2nd ed. Dover, New York (1964) (Contains a translation into English of Diophantus' Arithmetica, a 130 -page Introduction to Diophantus' and related work, and a 60 -page Supplement on Fermat's number-theoretic work.
7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theoory. Springer, New York (1972)
8. Katz, V.J.: A A istory of Mathematics, 3rd ed. Addison-Wesley, Hoboken (2009)
8. Katz, V.I.: A Aistory of Mathematics, Ird ed. Addison-Wesley, Hobo
9. Kleiner, I. A A History of Abstract Algebra. Birkhäuser, Basel (2007)
10. Ore, O.: Number Theory and its History. McGraw-Hill, New York (1948)
n. Pollard, H., Diamond, H.G.: The Theory of Algebraic Numbers, 2nd ed. Mathematical Association of America, Washington DC (1975)
2. Ribenboim, P.: 13 Lectures on Fermat's Last Theorem. Springer, New York (1979)
13. Robinson, A.: Numbers and Ideals. Holden-Day, San Francisco (1965)
14. Singh, S.: Fermat's Enigma: The Quest to Solve the World's Greatest Mathematical Problem. Penguin, New York (1997)
Stark, H.M.: An Introduction to Number Theory. MIT Press, Cambridge (1978)
6. Stillwell, J.: Elements of Number Theory. Springer (2000)
17. Stillwell, J.: Mathematics and Its History. Springer, New York (2010) (orig. 1989)
18. Weil, A.: Number Theory: An Approach Through History, from Hammurapi to Legendre. Birkhäuser, Boston 1984)

Further Reading

El. Elem.Math. 55, 19-37 (2000)

 рәэ!

-[9I 'sI ‘ ' 't] วəs 'sno

sఛวə!odd pue swəgod
रер s!̣ч

uo!snjuo)

 9.9

Power series played a fundamental role in the calculus of the seventeenth and eighteenth centuries, especially in Newton's and Euler's. They were viewed as infinite polynomials with little, if any, concern for convergence. The following is an example of Euler's derivation of th power-series expansion of $\sin x$, employing infinitesimal tools with great artistry [4, p. 235]:
Use the binomial theorem to expand the left-hand side of the identity $(\cos z+i \sin z)^{n}$ $=\cos (n z)+i \sin (n z)$, and equate the imaginary part to $\sin (n z)$. We then get:

$$
\begin{equation*}
\sin (n z)=n(\cos z)^{n-1}(\sin z)-[n(n-1)(n-2) / 3!](\cos z)^{n-3}(\sin z)^{3} \tag{5.1}
\end{equation*}
$$

$+[n(n-1)(n-2)(n-3)(n-4) / 5!](\cos z)^{n-5}(\sin z)^{5}-\ldots$.
Now let n be an infinitely large integer and z an infinitely small number (Euler sees no need to explain what these are). Then

$$
\cos z=1, \sin z=z, n(n-1)(n-2)=n^{3}, n(n-1)(n-2)(n-3)(n-4)=n^{5} \ldots
$$

(again no explanation from Euler, although of course we can surmise what he had in mind). Equation 5.1 now becomes

$$
\sin (n z)=n z-\left(n^{3} z^{3}\right) / 3!+\left(n^{5} z^{5}\right) / 5!-\ldots
$$

Let now $\mathrm{nz}=\mathrm{x}$. Euler claims that x is finite since n is infinitely large and z infinitely small. This finally yields the power-series expansion of the sine function:

$$
\sin x=x-x^{3} / 3!+x^{5} / 5!-\ldots . \text { It takes one's breath away! }
$$

This formal, algebraic style of analysis, used so brilliantly by Euler and practiced by most ighteenth-century mathematicians, is astonishing. It accepted as articles of faith that what is rue for convergent series is true for divergent series, what is true for finite quantities is true for infinitely large and infinitely small quantities, and what is true for polynomials is true for

Ernst Eduard Kummer (1810-1893)

Kummer's result was quite a feat, considering that during the previous two centuries FLT had been proved for only three primes. Further crucial progress would require another century nd more.

Kummer's brilliant work went much beyond its application to FLT. Its main fo cus was the study of reciprocity laws (see earlier comments in this section). One of its major achievements was to "rescue" unique factorization (see above) in the domains $C_{p}=\left\{a_{0}+a_{1} w+a_{2} w^{2}+\ldots+a_{p-1} w^{p-1}: a_{i} \in Z\right\}$ of cyclotomic integers. He did this by showing hat every nonzero, noninvertible element of C_{p} is a unique product of "ideal primes".

Kummer's work left important questions unanswered
(i) What is an "ideal prime" anyway? This central concept in his work was left vague.
(ii) Can his complicated theory of factorization of cyclotomic integers C_{p} into ideal primes be made transparent?
(iii) Can it be extended to domains other than C_{p} ? For example, to "quadratic domains", $Z_{d}=\{a+b \sqrt{d}: a, b \in Z\}$, if $d \equiv 2$ or $3(\bmod 4)$, and $Z_{d}=\{a / 2+(b / 2) \sqrt{d}: a$ and b are both even or both odd $\}$, if $d \equiv 1(\bmod 4)$? These do mains are important in the study of quadratic forms. As a rule they are not ufds. For in tance, $Z_{-5}=\{a+b \sqrt{-5}: a, b \in Z\}$ is not. For here $6=2 \times 3=(1+\sqrt{-5})(1-\sqrt{-5})$, where 2,3 $1+\sqrt{-5}, 1-\sqrt{-5}$ are primes in Z_{-5}.
It was left to Dedekind to give satisfactory answers to these questions. He did this in It was left to Dedekind to give satisfactory answers to these questions. He did this in
revolutionary work in 1871, introducing the concepts of field, ring, and ideal-in the context o revolutionary work in 1871 , introducing the concepts of field, ring, and ideal-in the context of
the complex numbers-and formulating a broadly applicable Unique Factorization Theorem (UFT)
A central idea in this work is that of an "algebraic number field". Let a be an al gebraic number-a root (recall) of a polynomial with integer coefficients-and set $Q(a)=\left\{q_{0}+q_{1} a+q_{2} a^{2}+\ldots+q_{n} a^{n}: q_{i} \in Q\right\}, Q$ the field of rational numbers. Dedekind showed that all the elements of $\mathrm{Q}(a)$ are algebraic numbers, and that $\mathrm{Q}(a)$ is a "field", called an "algebraic number field". In fact, he was the first to define a field.

Let now $\mathrm{I}(\mathrm{a})=\{\alpha \in \mathrm{Q}(\mathrm{a}): \alpha$ is an "algebraic integer" $\}$; that is, α is a root of a "monic" polynomials with integer coefficients. (A polynomial is "monic" if the coefficient of the highestdegree term is 1.) Dedekind showed that $\mathrm{I}(\mathrm{a})$ is a "ring"; its elements are called "the integers of

期 are T.

(LE8I U! ‘(0L8I-¢6LI) ว̣urา

Problems and Project

1. Describe some of Pascal's, Roberval's, or Wallis' work in calculus.
2. Discuss the priority dispute between Newton and Leibniz concerning the invention of calculus
3. Write a short essay on Archimedes' Method.
4. Discuss Euler's use of power series.
. Describe the essential elements in Lagrange's algebraic approach to calculus.
5. Discuss Bishop George Berkeley's critique of Newton's calculus.
6. Discuss Bishop George Berkeley's critique of Newton's calculus.
7. Write an essay on the "Arithmetization of Analysis". See $[1,4,8,11]$.
8. Discuss some of the errors in calculus in the late eighteenth and early nineteenth centuries resulting from the lack of proper foundations. See $[1,5,8]$.
9. Write a brief essay on the basic ideas of nonstandard analysis. See $[2-4,7]$.

References

1. Bottazzini, U.: The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass. Springer, New York (1986)
Dauben, J.W. Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics. In: Aspray, W., Kitcher, P. (eds.) History and Philosophy of Modern Mathematics, pp. 177-200 University of Minnesota Press, Minneapolis (1988)
2. Davis, M., Hersh, R.: Nonstandard analysis. Sci. Am. 226, 78-86 (1972)
3. Edwards, C.H.:The Historical Development of the Calculus. Springer, New York (1979)
4. Gardiner, A.: Infinite Processes: Background to Analysis. Springer, New York (1979)
5. Grabiner, J.W.: The origins of cauchy's rigorous calculus. MIT Press (1981)

Harnik, V: Infinitesimals from Leibniz to Robinson: time to bring them back to school. Math. Intell. 8(2), 41-47, 63 (1986)
Katz, V.: A Alistory of Mathematics, 3rd edn. Addison-Wesley, Boston (2009)
. Kitcher, P. The Nature of Mathematical Knowledge. Oxford University Press, New York (1983)
11. Kline, M.: Euler and infinite series. Math. Mag. 56, 307-314 (1983)
eonhard Euler (1707-1783)

methods, solved important problems, and furnished mathematicians with new ideas to help guide their researches in the decades ahead. Two central problems provided the early stimulu for these developments: reciprocity laws and FLT.

- Reciprocity Laws

The "quadratic reciprocity law", the relationship between the solvability of $x^{2} \equiv p(\bmod q)$ and $\mathrm{x}^{2} \equiv \mathrm{q}(\bmod \mathrm{p})$, with p and q distinct odd primes, is a fundamental result, established by Gaus in 1801. A major problem, posed by him and others, was the extension of that law to higher analogues, which would describe the relationship between the solvability of $\mathrm{x}^{\mathrm{n}} \equiv \mathrm{p}(\bmod q)$ and $\mathrm{x}^{\mathrm{n}} \equiv \mathrm{q}(\bmod \mathrm{p})$ for $\mathrm{n}>2$. (The cases $\mathrm{n}=3$ and $\mathrm{n}=4$ give rise to what are called "cubic" and "biquadratic" reciprocity, respectively.) Gauss opined that such laws cannot even be conjectured within the context of the integers. As he put it: "such a theory [of higher reciprocity] demands that the domain of higher arithmetic [i.e., the domain of integers] be endlessly enlarged" [7, p. 108]. This was indeed a prophetic statement.
Gauss himself began to enlarge that domain by introducing (in 1832) what came to be known as the "gaussian integers", $Z(i)=\{a+b i: a, b \in Z\}$. He needed them to formulate a "biquadratic reciprocity law" $[7]$. The elements of $Z(i)$ do indeed qualify as "integers", in the sense that they obey all the crucial arithmetic properties of the "ordinary" integers Z : The can be added, subtracted, and multiplied, and, most importantly, they obey a Fundamental Theorem of Arithmetic-every noninvertible element of $\mathrm{Z}(\mathrm{i})$ is a unique product of primes of $\mathrm{Z}(\mathrm{i})$, called "gaussian primes". The latter are those elements of $\mathrm{Z}(\mathrm{i})$ that cannot be written nontrivially as products of gaussian integers; for example, $7+\mathrm{i}=(2+\mathrm{i})(3-\mathrm{i})$, where $2+\mathrm{i}$ and $3-\mathrm{i}$ are gaussian primes [1]
A domain with a unique factorization property such as the above is called (as we have seen) a "ufd". Thus $\mathrm{Z}(\mathrm{i})$ is a ufd. Gauss also formulated a cubic reciprocity law, and to do hat he introduced yet another domain of integers, the "cyclotomic integers" of order 3 , $C_{3}=\left\{a+b w+\mathrm{cw}^{2}: a, b, c \in Z\right\}$, where, $w=(-1+\sqrt{3 i}) / 2$ is a primitive cube root of 1 ($\mathrm{w}^{3}=1, \mathrm{w} \neq 1$). This, too, turned out to be a ufd. Higher reciprocity laws were obtained in the nineteenth and early twentieth centuries [7].

$\varepsilon^{\Lambda}=z+z^{x}$

Gaussian Integers: From Arithmetic to Arithmetics

H. Grant, I. Kleiner, Turning Points in the History of Mathematics, Compact Textbooks in Mathematics, DOI 10.1000/9798-1-4939-3264-1-6, © Springer Science+Business Media, LLC 2015

6.1 Introduction

Number theory, also known as "arithmetic", or "higher arithmetic", is the study of properties of the positive integers. It is one of the oldest branches of mathematics, and has fascinated both amateurs and professionals throughout history. Many of its results are simple to state and understand, and many are suggested by concrete examples. But results are frequently very dif ficult to prove. It is these attributes of the subject that give number theory a unique and magical charm, claimed Carl Friedrich Gauss, one of the greatest mathematicians of all time.
To deal with the many difficult number-theoretic problems, mathematicians have had to nvoke-often to invent-advanced techniques, mainly in algebra, analysis, and geometry. So began, in the nineteenth and twentieth centuries, distinct branches of number theory, such as algebraic number theory, analytic number theory, transcendental number theory, and th geometry of numbers. It is in the context of algebraic number theory that we will encounte various "arithmetics".
"Diophantine equations", so named after the Greek mathematician Diophantus (fl. c. 250 AD who examined them extensively, have been a central theme in number theory. These are equations in two or more variables, with integer or rational coefficients, for which the solution sought are integers or rational numbers. The earliest such equation, $x^{2}+y^{2}=z^{2}$, dates back to Babylonian times, about 1800 BC . It has been important throughout the history of number theory. Its integer solutions are called "Pythagorean triples".

Records of Babylonian mathematics have been preserved on clay tablets. One of the mos Records of Babylonian mathematics have been preserved on clay tablets. One of the most preted as fifteen Pythagorean triples, each triple perhaps giving the sides of a right triangle [8 19]. There is no indication of how they were generated, or why (mathematics for fun?), but the listing suggests, as do other sources, that the Babylonians knew the Pythagorean theorem more than a millennium before the birth of Pythagoras (c. 570 BC).

6.3

Fermat

Pierre de Fermat was arguably the greatest mathematician of the first half of the seventeent century-though a lawyer by profession! In mathematics he made fundamental contribution to several areas, but number theory was his special passion. In fact, he founded that subject in its modern form.

Fermat's interest in number theory was aroused by Diophantus' acclaimed work Arithmeti ca [6]. He famously noted in the margin of Problem 8, Book II of Diophantus' book, which gave he representation of a given square as a sum of two squares, that -in contrast to that result-
» It is impossible to separate a cube into two cubes or a fourth power into two fourth powers or, in general, any power greater than the second into powers of like degree. I have discovered a truly marvelous demonstration, which this margin is too narrow to contain [4, p. 2].

Fermat thus claimed that the equation $\mathrm{z}^{\mathrm{n}}=\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}$ has no (nonzero) integer solutions if $\mathrm{n}>2$. This has come to be known as "Fermat's Last Theorem" (FLT), and was perhaps the most out tanding unsolved problem in number theory for 360 years. The distinguished mathematician André Weil (1906-1998) said the following about Fermat's claim [18, p. 104]:
" For a brief moment perhaps, and perhaps in his younger days, he must have deluded himself into thinking that he had the principle of a general proof [of FLT]; what he had in mind on that day can never be known.

The Princeton mathematician Andrew Wiles, who supplied a proof in 1994 [9, 14]-more than three centuries after Fermat's claim-also thought it most unlikely that Fermat had succeeded (Fermat did not give any proofs in his number-theoretic work, with the exception of FLT for $=4$, which is easier than for $\mathrm{n}=3$.)
Another important equation considered by Fermat is the "Bachet equation", $\mathrm{x}^{2}+\mathrm{k}=\mathrm{y}$ k is an integer), named after Claude-Gaspar Bachet de Mézeriac (1581-1638), a member of an informal group of Parisian scientists. Fermat found the (positive) solutions of $x^{2}+2=y^{3}$ and $x^{2}+4=y^{3}$, namely $x=5, y=3$ for the first equation, and $x=2, y=2$ and $x=11, y=5$ for the second. It is easy to verify that these are solutions of the respective equations, but rather difficult to show

[^0]: epeue）

 oleyso

 ләи！эри｜әе．я｜

 子иеля ィрıен

