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Preface

e development of mathematics has not followed a smooth or continuous curve, 
although in hindsight we may think so. As the mathematician and historian of 
mathematics Eric Temple Bell (1883–1960) said: “Nothing is easier … than to 
t a deceptively smooth curve to the discontinuities of mathematical invention” 
[1, p. viii]. In fact, there have been dramatic insights and breakthroughs in mathe-
matics throughout its history, as well as what seemed for a time to be insurmount-
able stumbling blocks—both leading to major shis in the subject. And then—for 
the most part—there have been relatively “routine” developments, from whose 
importance we do not wish to detract.

Here are two “nonroutine” examples:
a. e invention (discovery?) of noneuclidean geometry—a breakthrough which 

was about two millennia in the making (ca 300 BC—ca 1830), and which cul-
minated in the resolution of “the problem of the h postulate.” is brought 
about a reevaluation of the nature of geometry and its relationship to the 
physical world and to philosophy, as well as a reconsideration of the nature of 
axiomatic systems. See 7 Chapter .

b. e introduction, around the mid-eighteenth century, of “foreign objects”, 
such as irrational and complex numbers, into number theory, to be followed 
in the late nineteenth century by the founding of a new subject—algebraic 
number theory. ese developments paved the way for splendid achievements 
of modern mathematics, including, to take a familiar example, the resolution 
of the problem, stated in the 1630s, concerning the unsolvability in integers 
of Fermat’s equation xn + yn = zn, n >  2. e proof of unsolvability, given by 
Andrew Wiles in 1994, required most of the grand ideas which number theory 
had evolved during the twentieth century. See 7 Chapter  and [4].

We aim in this book to discuss some of these major turning points—transitions, 
shis, breakthroughs, discontinuities, revolutions (if you will)—in the history of 
mathematics, ranging from ancient Greece to the present [2, 3]. Among those which 
we consider are the rise of the axiomatic method (7 Chapter ), the wedding of alge-
bra and geometry (7 Chapter ), the taming of the innitely small and the innitely 
large (7 Chapter ), the passage from algebra to algebras (7 Chapter ), and the revo-
lutions resulting in the late nineteenth and early twentieth centuries from Cantor’s 
creation of transnite set theory (7 Chapters  and ). e historical origin of each 
turning point is discussed, as well as some of the resulting mathematics.

e above examples, and others discussed in this book, highlight the great 
drama inherent in the evolution of mathematics. Teachers of this grand subject 
will benet from reecting on this important aspect of it, focusing on the big ideas 
in its development—though not, of course, to the neglect of “routine” mathemat-
ics. ey should pass on to students—at some point in their studies—at least the 
spirit, if not always the content, of these ideas. In particular, students should be 
made aware that not every fact, technique, idea, or theory is as important, and 
should receive as much emphasis, as every other. If this thought is not conveyed to 
them, our teaching will do justice neither to the students nor to the subject.
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e book contains ten chapters, more or less of equal length, though not of 
equal diculty. ey describe only a small number of “turning points” in the his-
tory of mathematics, and we have appended an 11th chapter which suggests “Some 
Further Turning Points” to pursue. Each chapter contains about ten “problems 
and projects”, most of which are intended to deepen or extend the material in the 
text. At the end of each chapter there is a substantial list of references, whose aim 
is to elaborate, enhance, and exemplify the material in the text proper. Finally, the 
book has a comprehensive index.

is book can be read by a person with some mathematical background who is 
interested in getting a nontraditional look at aspects of the history of mathematics. 
It can also be used in history-of-mathematics courses, especially those centered 
around the important idea of “turning points.” Moreover, since appreciation of the 
historical development of the central ideas of mathematics enhances, we strongly 
believe, one’s understanding and appreciation of the subject, this book can serve as 
a text in a capstone course for mathematics majors, a course that will integrate and 
“humanize” at least some of their knowledge of mathematics by placing it in his-
torical perspective. In any such course our book will probably need to be supple-
mented by additional technical material; a teacher will know best when and how 
to use this “extra” material in his or her particular classroom setting. Teachers are 
resourceful and will likely use the book in ways we have not anticipated.

One of the reviewers of our book said the following: “I see the value of the 
manuscript in its role as a ‘starter’ to ignite love for the history of maths and to 
give a rst overview. It is a good ‘teaser’.” We hope that readers’ experiences will 
justify this assessment.

We want to thank Chris Tominich, Assistant Editor, Birkhäuser Science, for 
his outstanding cooperation in seeing this book to completion, and Ben Levitt, 
Birkhäuser Science Editor, for his cordial and ecient support.

I (HG) want to thank three generations of my family—my dear sisters Nan-
cy and Kathy, and my cherished nephews, nieces-in-law, and great-nieces Ross, 
Sevaun, Zada, and Alyn, and Ian, Lynn, and Charlotte—for love, inspiration, and 
many good times.

And I (IK) want to thank my dear wife of 50 years, Nava, for her support and 
encouragement over these many years. I have also gained invaluable perspective 
in seeing our children and grandchildren—Ronen, Leeor, Tania, Ayelet, Howard, 
Tamir, Tia, Jordana, Jake, and Elise—grow, mature, and thrive.
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e methods of this eld are thus for the most part akin to those of the scientist: experimenting, 
much of it via the computer and its increasingly sophisticated tools, formulating hypotheses, 
and testing these by further experimentation. ese various activities—short of proof—are pub-
lishable, following the usual reviewing process. Not that proof is to be abandoned, but the focus 
is elsewhere. As Borwein, who calls himself a “computer-assisted fallibilist”, asserts [2, p. 35]:

 » In my view, it is now both necessary and possible to admit quasi-empirical inductive meth-

ods fully into mathematical argument. In doing so we will enrich mathematics…. Mathe-

matics is primarily about secure knowledge, not proo …. Proos are oten out o reach— but 

understanding, even certainty, is not.

As an illustration Borwein gives the following example [2, p. 37]:

 » Given an interesting identity buried in a long and complicated paper on an unfamiliar sub-

ject, which would give you more condence in its correctness: staring at the proof, or con-

rming computationally that it is correct to , decimal places? Here is such a formula 

[which arose in quantum eld theory]:

Does this new subject represent a paradigm shi in mathematics?
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Similar objections were raised to very long traditional proofs of theorems, for example, the 
proof (in the 1960s) of the Feit-ompson theorem describing the solvability of nite groups 
of odd order. Speaking of this theorem, and other results whose proofs are very long, the famed 
mathematician Jean-Pierre Serre observed [6, p. 11]:

 »What shall one do with such theorems, if one has to use them? Accept them on faith? Prob-

ably. But it is not a very comfortable situation.

Largely as a result of these developments, a novel philosophy of mathematical proof, called 
“quasi-empiricist proof” or “proof as a social process”, has emerged. Its essence, according to 
its advocates, is that proofs are not infallible. us mathematical theorems cannot be guaran-
teed absolute certainty. And this applies not only to the theorems requiring very long proofs or 
assistance of a computer but also to many “run of the mill” cases [8].

11.5 Experimental Mathematics: From Humans to Machines

 »One of the greatest ironies of the information technology revolution is that while the com-

puter was conceived and born in the eld of pure mathematics, through the genius of gi-

ants such as John von Neumann and Alan Turing, until recently this marvelous technology 

had only a minor impact within the eld that gave it birth [, p. ].

ese words were published in 2008. But during the last two decades or so of the twentieth cen-
tury,the computer did in fact make wide and deep inroads into mathematics. It invigorated old 
elds, and it stimulated, or was instrumental in, the founding of new ones. In the latter category 
was “experimental mathematics”, established around 1990 by David Bailey (1948–), Jonathan 
Borwein (1951–), and others. is was a major departure from the traditional understanding of 
the mathematical enterprise, for it entailed “the utilization of advanced computer technology 
in mathematical research” [1, p. 2].

In 1991 a new journal, Experimental Mathematics, was launched. Its founders noted that it 
diers from the traditional mathematics journals in that its focus is “not only [on] theorems 
and proofs but also [on] the way in which they have been or can be reached. … e objective 
of Experimental Mathematics is to play a role in the discovery of formal proofs, not to displace 
them” [2, p. 671]. Bailey and Borwein give a more detailed “denition” of experimental math-
ematics [1, pp. 2, 3]:

 »By experimental mathematics we mean the methodology of doing mathematics that in-

cludes the use of computations for [, p. ]:

. Gaining insight and intuition.

. Discovering new patterns and relationships.

. Using graphical displays to suggest underlying mathematical principles.

. Testing and especially falsifying conjectures.

. Exploring a possible result to see if it is worth a formal proof.

. Suggesting approaches for formal proof.

.  Replacing lengthy hand derivations with computer-based derivations.

. Conrming analytically based results.

11
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But not everyone was pleased with these developments, these “exceptions and irregularities”. 
Some called such functions “pathological”, others gave them less pleasant designations. us 
Charles Hermite asserted (in 1893) that he “turn[ed] away with fright and horror from this lam-
entable evil of functions … ” [14, p. 973]. Henri Poincaré was more specic (1899) [14, p. 973]:

 » Logic sometimes makes monsters. For half a century we have seen a mass of bizarre func-

tions which appear to be forced to resemble as little as possible honest functions which 

serve some purpose. More of continuity, or less of continuity, more derivatives, and so forth 

…. In former times when one invented a new function it was for a practical purpose; today 

one invents them purposely to show up defects in the reasoning of our fathers and one will 

deduce from them only that.

Hermite and Poincaré did not prevail, of course. e work of Riemann, Weierstrass, and others 
(in the second half of the nineteenth century) in analysis necessitated—once again—a reexami-
nation of its foundations, leading to the “arithmetization of analysis” [4, 14].

11.4 The Nature of Proof: From Axiom-Based to Computer-Assisted

e later decades of the twentieth century saw the solution of major outstanding mathematical 
problems—including the Kepler conjecture, the four-color conjecture, the Bieberbach conjec-
ture, Fermat’s Last “eorem”, the Feit-ompson conjecture, the problem of classication of 
all nite simple groups, and the Poincaré conjecture (this last was solved in 2006). e com-
puter played a major role in establishing some of these conjectures—and several others. is 
has occasioned a rethinking of the meaning and role of proof in mathematics.

e catalyst was the computer-aided proof (1976) of the four-color theorem by Kenneth 
Appel and Wolfgang Haken. e proof required the verication, by computer, of 1482 distinct 
congurations. Some critics argued that this proof (and others like it) was a major departure 
from tradition. ey advanced several reasons:
a. e proof contained thousands of pages of computer programs that were not published 

and thus were not open to the traditional procedures of verication by the mathematical 
community. In particular, how can a referee check the entire proof?

b. Both computer hardware and computer soware are subject to error. Is the computer, 
then, an experimental tool?

Kenneth Appel (–) 
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1.1 Euclid’s Elements

e axiomatic method is, without doubt, the single most important contribution of ancient 
Greece to mathematics. e explicit recognition that mathematics deals with abstractions, 
and that proof by deductive reasoning from explicitly stated postulates oers a foundation for 
mathematics, was indeed an extraordinary development. When, how, and why this came about 
is open to conjecture. Various reasons—both internal and external to mathematics (Raymond 
Wilder calls them “hereditary” and “environmental” stresses, respectively [14])—have been ad-
vanced, with various degrees of certainty, for the emergence of the axiomatic method in ancient 
Greece. Among the suggested causes are:
a. e nature of Greek society. Of course people have always—if oen unconsciously—

used “axioms” in conversations—shared presumptions from which one participant urges 
conclusions on the others. Two characteristic features of Greek experience,both dating 
from the h century BC, spurred reection on these everyday occurrences. e courts 
of law and the citizen assemblies created by the (limited) democracy conferred high value 
on the techniques and strategies of skilful persuasion. A science of “rhetoric” developed, 
in which argument proceeded in specic modes and stages, analogous to the successive 
steps in a euclidean proof (see [10], 7 Chapter ).

b. e predisposition of the Greeks to the kind of philosophical inquiry in which answers 
to ultimate questions are of prime concern. For example, the attempt by Parmenides 
(ca. 515−450 BC), the founder of the “Eleatic” school of philosophy, to show that all of 
ultimate reality is an unchanging unity is generally taken by modern scholars to be the 
oldest deductive argument that has come down to us [10, p. 102]. Parmenides used the 
indirect method of proof, assuming the denial of his intended conclusion and reaching 
an untenable outcome. e famous paradoxes of Parmenides’ pupil Zeno, which claim to 
prove that motion is impossible, are (of course) also deductive arguments. Zeno also used 
the indirect method of proof (see [11], but also [9], in which an alternative thesis is pro-
posed). Both of these thinkers may have consciously worked from explicit assumptions—
in  eect, axioms—though no hint of these survives. In this connection it is interesting 
to note the view of the eighteenth-century mathematician and scientist A.-C. Clairaut 
regarding Euclid’s proofs of obvious propositions [8, pp. 618 − 619]:

 Chapter 11 • Some Further Turning Points

adequate for the mathematics of the nineteenth century. For instance, in 1829 Peter Lejeune 
Dirichlet gave an example of a function—namely, D(x) = c, if x is rational, and D(x) = d, if x 
is irrational (c and d unequal real numbers)—which is not an analytic expression. Moreover 
D(x) is discontinuous everywhere. Eighteenth-century mathematicians believed—and some 
“proved”!—that every function is continuous, except perhaps at nitely many points. But in the 
mid-nineteenth century Bernhard Riemann and Karl Weierstrass gave examples of functions 
that are everywhere continuous but nowhere dierentiable, and Riemann exhibited a highly 
discontinuous Riemann-integrable function. ese examples were not given for idle play; they 
were important in connection with the study of Fourier-series representation of functions 
[4, 9].

e character of analysis was evolving. Since the seventeenth century its processes had been 
assumed to apply to “all” functions, but it now turned out that they are restricted to particular 
classes of functions. In fact, the investigation of various classes of functions—such as continu-
ous functions, semi-continuous functions, dierentiable functions, functions with noninte-
grable derivatives, integrable functions, monotonic functions, continuous functions that are 
not piecewise monotonic—became a principal concern of analysis. Whereas mathematicians 
had formerly looked for order and regularity in analysis (calculus), some now took delight in 
discovering exceptions and irregularities (See [12, p. 119]).

Bernhard Riemann (–)  

Karl Weierstrass (–s)  
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 » It is not surprising that Euclid goes to the trouble of demonstrating that two circles which 

cut one another do not have a common centre, that the sum of the sides of a triangle which 

is enclosed within another is smaller than the sum of the sides of the enclosing triangle. 

This geometer had to convince obstinate sophists who glory in rejecting the most evident 

truths; so that geometry must, like logic, rely on formal reasoning in order to rebut the quib-

blers.

c. e desire to decide among contradictory results bequeathed to the Greeks by earlier 
civilizations [12, p. 89]. For example, the Babylonians used the formula 3r2 for the area of 

a circle, the Egyptians 8

9
2

2

×








r . (ere is evidence that the Babylonians also used 3

1

8

 as 

an estimate for π [8, p. 11].) is encouraged the notion of mathematical demonstration, 
which in time evolved into the deductive method.

d. e need to resolve the “crisis” engendered in the h century BC by proof of the incom-
mensurability of the diagonal and side of the square [3]. A fundamental tenet of the Py-
thagoreans was that all phenomena can be described by numbers, which to them meant 
positive integers. ey developed important parts of geometry with the aid of this princi-
ple. In particular, the principle implied that any two line segments a and b are commensu-
rable (have a common measure), that is, that there exists a line segment t such that a = mt, 
b = nt, with m and n positive integers. But around 430 BC they proved that the side and 
diagonal of a unit square are not commensurable. (In a modern formulation we would say 
that 2

 
is irrational.) [7]. is must have been a great shock to them, as it went counter 

to their philosophy and their mathematics. And it might have provided an important 
impetus for a critical reevaluation of the logical foundations of mathematics [3(a)].

e. e need to teach. is may have forced the Greek mathematicians to consider the basic 
principles underlying their subject. It is noteworthy that the pedagogical motive in the 
formal organization of mathematics is also present in the works of later mathematicians, 
notably Lagrange, Cauchy, Weierstrass, and Dedekind [8].

Euclid’s great merit was to have collected, and arranged brilliantly in a grand axiomatic edice 
called Elements, much of the mathematics of the previous three centuries (with notable excep-
tions, such as conic sections). His opus comprises over 450 propositions (theorems), deduced 
from ve (!) postulates (axioms), and arranged in thirteen “Books” (chapters). e postulates 
are:
1. A straight line may be drawn between any two points.
2. A straight line segment may be produced indenitely.
3. A circle may be drawn with any given point as centre and any given radius.
4. All right angles are equal.
5. If a straight line intersects two other straight lines lying in a plane, and if the sum of the 

interior angles thus obtained on one side of the intersecting line is less than two right 
angles, then the straight lines will eventually meet, if extended suciently, on the side on 
which the sum of the angles is less than two right angles.

For over two thousand years, to teach elementary geometry meant to teach it essentially as 
Euclid had presented it. His masterpiece rst appeared in print in 1482 (the printing press origi-
nated in ca. 1450). More than a thousand editions have appeared since, a profusion superseded 
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A pioneering work on the abstract notion of a vector space of arbitrary dimension was Her-
mann Grassmann’s Doctrine of Linear Extension (1844). But this book attracted little attention: 
it was “philosophical”, and it was too abstract for its time. An 1862 edition was better received. 
An abstract treatment of basic elements of vector space theory was given in 1888 by Giuseppe 
Peano in his Geometric Calculus. See [13, 14].

11.3 Pathological Functions: From Calculus to Analysis

e aim of this section is to indicate some high points in the transition—in the nineteenth 
century—from calculus to analysis, in which “pathological functions” played a central role.

e calculus invented by Newton and Leibniz (see 7 Section ., above, and 7 Chapter ) 
was based on variables related by equations, with the focus on geometry: nding areas, vol-
umes, tangents.

e concept of function was introduced in the rst half of the eighteenth century, and was 
made central around 1750 by Leonhard Euler, who declared—and showed in his books—that 
calculus is the branch of mathematics dealing with functions. Euler considered a function to 
be an (algebraic) “formula”—a so-called “analytic expression”. Neither “formula” nor “analytic 
expression” was dened, but many examples were given. e essential point is that the concept 
of variable, applied to geometric objects in the seventeenth century, was gradually replaced in 
the eighteenth by that of function, understood to be an algebraic formula.

e nineteenth century ushered in a period of rigor in various areas of mathematics. Au-
gustin-Louis Cauchy (1789–1857) found the lack of rigor in calculus unsatisfactory, and his 
textbooks of the 1820s aimed at a remedy. He selected a few fundamental notions (limit, conti-
nuity, convergence, derivative, and integral), established the limit concept as the one on which 
to base all the others, and derived by fairly rigorous means the subject’s major results. It is im-
portant to note that most of these concepts, as we understand them, were either not recognized 
or not clearly formulated before Cauchy’s time. A “new” subject, “analysis”, also known as the 
“theory of functions”, was thus born [4].

But there were shortcomings in Cauchy’s program. In particular, he conceived a function 
in the eighteenth-century way—as an analytic expression (a formula). But this was no longer 

Hermann Grassmann (–) 
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only by the Bible. e Elements also inspired Newton to present his masterpiece of physics and 
cosmology, the Principia, axiomatically, and it inspired Spinoza to write his philosophical chef 

d’oeuvre, the Ethics, in the same style.

1.2 Hilbert’s Foundations of Geometry

But despite this inuence of the Elements, the practice of mathematics in the euclidean man-
ner is a rather rare phenomenon in the ve thousand-year history of mathematics. It was 
consciously undertaken for around two hundred years in ancient Greece and was resumed 
in the nineteenth century. Both of these periods were preceded by centuries of mathematical 
activity that was oen vigorous but rarely rigorous. But for over two millennia there was only 
one geometry—Euclid’s. Its axioms, with the exception of the h, were taken to describe an 
idealization of physical space and were therefore viewed as “self-evident truths”, not open to 
critique. Its theorems, which were logical consequences of the axioms, were therefore also 
viewed as truths (see 7 Chapter ).

e nineteenth century brought a revolution in geometry, both in scope and in depth. New 
varieties emerged: projective geometry (Girard Desargues’ work in 1639 on the subject came to 
light only in 1845), hyperbolic geometry, elliptic geometry, Riemannian geometry, dierential 
geometry, and algebraic geometry. Jean Victor Poncelet founded synthetic projective geometry 
in the early 1820s as an independent subject, but lamented its lack of general principles, and 
the validity of his “principle of duality”—that the truth of theorems is preserved by interchange 
of “point” and “line”—was questioned. e consistency of noneuclidean (hyperbolic) geometry 
and the relationship of axioms to the physical world were also in debate. And the relative merits 
of geometric methods were contested: the metric versus the projective, the synthetic versus the 
analytic.

Important new ideas entered geometry: points and lines at innity, use of complex num-
bers (cf. complex projective space), use of calculus, extension of geometry to n dimensions, 
Hermann Grassmann’s “calculus of extension”, invariants—for example, the “invariant theory 
of forms” developed by Cayley and Sylvester, and groups—for example, groups of the regular 
solids. An important development was Felix Klein’s proof (1871) that euclidean, hyperbolic, 
and elliptic geometries are subgeometries of projective geometry. For a time it was said that 
projective geometry was all of geometry [5, p. 239]. is period of profound changes le many 
mathematicians uneasy. e historian of mathematics Jeremy Gray (1947–) claimed that “signs 

Euclid (. ca.  BC)
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integers, decimal fractions, exponents, and arithmetic signs—for example, signs for addition 
and multiplication.

11.2 Space Dimensions: From 3 to n (n >3)

For about two millennia, beginning withancient Greece, mathematical concepts, results, and 
theories were oen deemed to represent the physical world. In particular, euclidean 3-space 
was an idealization of the space of our daily experience, and since the latter is 3-dimensional, 
so wasthe former. Because space of dimension greater than 3 made no physical sense, it made 
no mathematical sense. For example, Aristotle stated that “no magnitude can transcend three 
because there are no more than three dimensions” [14, p. 1028], and John Wallis considered 
a space of dimension greater than 3 “a monster in nature … less possible than a chimera” 
[14, p. 1028].

In the nineteenth century mathematics increasingly came to be severed from its intimate 
relation to the physical world (there were a few earlier examples, for instance complex num-
bers). Mathematicians began to introduce concepts and derive results with little thought of 
their application in nature. “e essence of mathematics lies in its freedom” , asserted Georg 
Cantor, giving expression to this view [14, p. 1031].

In the 1840s William Rowan Hamilton and Arthur Cayley, among others, introduced 
4-dimensional geometry [5, 7, 11]. Hamilton, for example, tried to extend the multiplication of 
complex numbers (pairs of reals) to triples of reals – whereupon, he claimed, “there dawned on 
me the notion that we must admit, in some sense, a fourth dimension of space for the purpose 
of calculating with triples” [15, p. 230], thereby giving birth to the quaternions. Cayley (and 
others) extended these to the octonions, 8-tuples of reals (see 7 Chapter ). Cayley also wrote a 
paper in 1843 entitled Chaptersin the Analytic Geometry of (n) Dimensions [5]. We see in these 
works both algebraic and geometric motivations.

François Viète (–)
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of anxiety about the nature of geometry run like ssures through late 19th-century mathemat-
ics” [5, p. 247].

Euclidean geometry did not escape scrutiny. Although Euclid was the paragon of rigor for 
more than two thousand years, logical shortcomings were now recognized in his masterpiece 
Elements. For example, his very rst proposition in Book I, which presents the construction of 
an equilateral triangle, has a faulty proof: while Euclid assumed implicitly that two circles, each 
of which passes through the center of the other, intersect, this observation requires an axiom of 
continuity, supplied two millennia later by David Hilbert. Gauss pointed out that such concepts 
as “between”, used freely and intuitively by Euclid, must be given an axiomatic formulation.

ese challenges were taken up during the last two decades of the nineteenth century by a 
number of mathematicians. ey provided, for projective, euclidean, and noneuclidean geom-
etries, axioms free of the types of blemishes that appear in Euclid’s presentation. e rst to do 
this was Moritz Pasch, who wrote an extensive work in 1882 on the foundations of projective 
geometry. Pasch set out clearly a crucial aspect of modern axiomatics, which departs radically 
from Euclid’s procedure [8, p. 1008]:

 » If geometry is to become a genuine deductive science, it is essential that the way in which 

inferences are made should be altogether independent of the meaning of the geometrical 

concepts, and also of the diagrams; all that need be considered are the relationships be-

tween the geometrical concepts asserted by the propositions and denitions.

e most inuential work in this genre was Hilbert’s Foundations of Geometry of 1899. His aim 
was “to present a complete and simplest possible system [Hilbert’s italics] of axioms [for euclid-
ean geometry], and to derive from these the most important geometrical theorems” [1, p. 344]. 
To avoid the pitfalls in Euclid’s Elements—reliance on intuitive arguments, oen based on 
diagrams—Hilbert required twenty postulates; Euclid, recall, had ve. Hilbert listed his axioms 
under ve headings: I. axioms of connection, II. axioms of order, III. axiom of parallels (Euclid’s 
h axiom), IV. axioms of congruence, and V. axiom of continuity (Archimedes’ axiom).

Crucial was the use, as urged by Pasch, of undened terms, so-called primitive terms. Why 
are they needed? Because just as one cannot prove everything, hence the need for axioms, so 
one cannot dene everything, hence the need for undened terms. ey are not uniquely de-
termined; among Hilbert’s choices are “point”, “(straight) line”, and “plane”. Euclid dened all 
three terms, for example, a “point” as “that which has no part”—which is not very informative.

Euclid considered his axioms to be self-evident truths, but Hilbert’s are neither self-evident 
nor true. ey are simply the starting points, the basic building blocks, of the theory—assump-
tions about the relations among the primitive terms of the axiomatic system. e primitive 
terms are said to be “implicitly” dened by the axioms. As early as 1891 Hilbert highlighted the 
observation about the arbitrary nature of the primitive terms in the now classic remark that 
“It must be possible to replace in all geometric statements the words point, line, plane by table, 
chair, mug” [13, p. 14]. It follows that the axioms, hence also the theorems, are devoid of mean-

ing. It is therefore not inappropriate to call Euclid’s system “material axiomatics” and Hilbert’s 
system “formal axiomatics” [3(a), p. 63 and 3(b), p. 171].

Hilbert’s Foundations of Geometry went through ten editions (in the original German), sev-
en in Hilbert’s lifetime. It served as a model of what an axiom system should be like, and more 
broadly, it “demonstrated brilliantly the vitality of the new axiomatic approach to geometry” 
[1, p. 361]. Garrett Birkho and Mary Katherine Bennett wrote (1987) of the  Foundations that 
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We have discussed in this booklet a number of turning points in the evolution of mathematics, 
but of course we have not exhausted them all. In this nal chapter we suggest ve other topics 
for the reader to pursue—with relatively brief outlines and references:
a. Notation: From Rhetorical to Symbolic
b. Space Dimensions: From 3 to n (n >3)
c. Pathological Functions: From Calculus to Analysis
d. e Nature of Proof: From Axiom-Based to Computer-Assisted
e. Experimental Mathematics: From Humans to Machines

11.1 Notation: From Rhetorical to Symbolic

We take symbols in mathematics for granted. Without a well-developed symbolic notation, 
mathematics would be inconceivable to us. We should note, however, that the subject evolved 
for at least three millennia with hardly any symbols! e historian of mathematics Kirsti Ped-
erson notes the impact of the lack of notation on the early development of calculus [10, p. 47]:

 » An important reason why mathematicians [of the early seventeenth century] failed to see 

the general perspectives inherent in their various methods [for solving calculus problems] 

was probably the fact that to a great extent they expressed themselves in ordinary lan-

guage without any special notation and so found it dicult to formulate the connections 

between the problems they dealt with.

In crucially important developments, symbolic notation was introduced in algebra by François 
Viète (1540–1603) in the late sixteenth century, and in calculus by Gottfried Leibniz (1646–1716)  
and Isaac Newton (1642–1727)  in the late seventeenth century. Leibniz’ superior notation 
prevailed over Newton’s. Its pedagogical advantages are well expressed by the mathematician 
Charles Edwards:

 » It is hardly an exaggeration to say that the calculus of Leibniz [unlike that of Newton] brings 

within the range of an ordinary student problems that once required the ingenuity of an 

Archimedes or a Newton [, p. ].

A good notation aids not only in the proof of results but also in their discovery. A poor notation 
can impede progress.

Two more examples of superb notations are Carl Friedrich Gauss’ for congruences and 
Arthur Cayley’s for matrices. Also important was the introduction of notations for positive 
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it was “the most inuential book on geometry written in the [nineteenth] century” [1, p. 343], 
and E. T. Bell claimed that it “inaugurated the abstract mathematics of the 20th century”  
[1, p. 343].

1.3 The Modern Axiomatic Method

In the wake of Hilbert’s Foundations one could dene a “geometry” by picking a set of primi-
tive terms—which, since it is to be a geometry, we might as well call “point”, “line” …—and a 
consistent set of axioms, and logically deducing consequences from the axioms, which are then 
theorems of the geometry. Considerations like these gaverise in the nineteenth and early twen-
tieth centuries to such geometries as desarguesian, nondesarguesian, nite, neutral, nonarchi-
medean, and inversive. Soon one began to describe (dene) in Hilbert’s manner mathematical 
structures other than geometries. us Giuseppe Peano dened (characterized) the positive 
integers in 1889 by means of the now classic Peano axioms, and Hilbert in 1900 gave a character-
ization of the real numbers as a complete ordered archimedean eld. ese accomplishments 
were in line with the spirit of rigor, generalization, abstraction, and axiomatization prevailing 
in late nineteenth- and early twentieth-century mathematics. Among early exponents of this 
approach were Dedekind, Peano, and especially Hilbert himself.

Yet another approach to axiomatics was begun in algebra and resulted in the now familiar 
algebraic structures of groups, rings, elds, vector spaces, modules, and ideals. ese struc-
tures arose mainly from mathematicians’ inability to solve old problems by old means, which 
necessitated the introduction of new structures. For the story of the rise of the group concept 
see [15]. Topological spaces, normed rings, Hilbert spaces, and lattices are among many other 
examples of mathematical structures dened by axiom systems. ese structures, unlike (say) 
euclidean geometry, the natural numbers, or the real numbers, do not characterize a unique 
mathematical entity, but rather subsume many (usually innitely many) dierent objects under 
the roof of a single set of axioms.

e rise of modern axiomatics—one of the most distinctive features of modern mathemat-
ics—was gradual and slow, lasting for much of the nineteenth century and the early decades of 
the twentieth. In the 1920s the axiomatic method became well established in a number of major 
areas of mathematics, including algebra, analysis, geometry, and topology, and it ourished 

David Hilbert (–)
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during the following three decades. Nicolas Bourbaki, among its most able practitioners and 
promoters, gave an eloquent description of the essence of the axiomatic method at what was 
perhaps the height of its power, in 1950 [2, p. 223]:

 » What the axiomatic method sets as its essential aim, is exactly that which logical formalism 

by itself cannot supply, namely the profound intelligibility of mathematics. Just as the ex-

perimental method starts from the a priori belief in the permanence of natural laws, so the 

axiomatic method has its cornerstone in the conviction that, not only is mathematics not a 

randomly developing concatenation of syllogisms, but neither is it a collection of more or 

less “astute” tricks, arrived at by lucky combinations, in which purely technical cleverness 

wins the day. Where the supercial observer sees only two, or several, quite distinct theo-

ries, lending one another “unexpected support” through the intervention of a mathemati-

cian of genius, the axiomatic method teaches us to look for the deep-lying reasons for such 

a discovery, to nd the common ideas of these theories, buried under the accumulation of 

details properly belonging to each of them, to bring these ideas forward and to put them in 

their proper light.

In this article Bourbaki presents a panoramic view of mathematics organized around what he 
calls “mother structures”—algebraic, ordered, and topological, and various substructures and 
cross-fertilizing structures. is must have been an alluring, even bewitching, perspective to 
those growing up mathematically during this period.

1.4 Ancient vs. Modern Axiomatics

ere are signicant dierences between Euclid’s axiomatics and its modern incarnation in the 
nineteenth and twentieth centuries. Comparing Euclid’s Elements with Hilbert’s Foundations 

of Geometry makes starkly clear how standards of rigor have evolved. Moreover, while the 
chief role played by the axiomatic method in ancient Greece was (probably) that of providing 
a sure foundation, it became in the rst half of the twentieth century a tool of research. Note, 
for example, the rich and deep theory of groups, which comprises the logical consequences of 
a “simple” set of four axioms.

e modern axiomatic method was also indispensable in clarifying the status of various 
mathematical methods and results, such as the axiom of choice and the continuum hypothesis, 
to which mathematicians’ intuition provided little guide. And it played an essential role in the 
discovery of certain concepts, results, and theories. For example, the desarguesian and non-
desarguesian geometries “could never have been discovered without [the axiomatic] method” 
[4, p. 182]. us the sometimes opposed activities of discovery and demonstration coexisted 
within the axiomatic method.

e modern axiomatic method was however not universally endorsed. Although some, 
notably Hilbert, claimed that it is the central method of mathematical thought, others, for 
instance Klein, argued that as a method of discovery it tends to stie creativity. And it has 
its limitations as a method of demonstration. e following quotation from Hermann Weyl 
(1885–1955) puts the issue in a broader perspective [13, p. 38; his italics]:

 » Large parts of modern mathematical research are based on a dexterous blending of axiomatic 

and constructive procedures.

1
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It is probably safe to say, however, that most mathematicians are untroubled, at least in their 
daily work, about the debates over their subject’s underpinnings. “I think”, says the distin-
guished modern mathematician Richard Askey, “there is far too much emphasis on [ … ] 
the foundations of mathematics in much of what is published on the history of mathematics” 
[1, p. 203]. Philip Davis and Reuben Hersh put the issue in perspective [4, p. 318]:

 » If you do mathematics every day, it seems the most natural thing in the world. If you stop to 

think about what you are doing and what it means, it seems one of the most mysterious.

Weyl says it more lyrically:

 » The question of the ultimate foundations and the ultimate meaning of mathematics re-

mains open; we do not know in what direction it will nd its nal solution or even whether 

a nal objective answer can be expected at all. ‘Mathematizing’ may well be a creative activ-

ity of man, like language or music, of primary originality, whose historical decisions defy 

complete objective rationalization [, p. ].

Problems and Projects

1. What is Platonism, and how is it related to Plato’s view of mathematics?
2. Discuss the axiom of choice. Why was it controversial?
3. Discuss briey the Zermelo–Fraenkel axiomatization of set theory. How did it avoid Russ-

sell’s paradox?
4. What is the continuum hypothesis? Discuss Gödel’s and Cohen’s results dealing with this 

hypothesis.
5. What are cantorian and noncantorian set theories? Compare with euclidean and noneu-

clidean geometries.
6. Discuss humanism, a philosophy of mathematics proposed by Reuben Hersh. See [12].
7. Discuss the philosophy of proof outlined by Imre Lakatos (1922–1974) in his booklet 

Proofs and Refutations.
8. It has been claimed that Gödel’s incompleteness theorems imply the intellectual superior-

ity of humans over machines. Discuss. See for example [9].
9. Discuss the role of proof in mathematics and changes in its practice. See [4, 5, 10, 14].
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And nally, a comment from Bourbaki—a masterful practitioner and strong advocate of the 
axiomatic method [2, p. 231]:

 »The unity which [the axiomatic method] gives to mathematics is not the armor of formal 

logic, the unity of a lifeless skeleton; it is the nutritive uid of an organism at the height of 

its development, the supple and fertile research instrument to which all the great math-

ematical thinkers since Gauss have contributed, all those who, in the words of Lejeune-

Dirichlet, have always labored to “substitute ideas for calculations”.

Problems and Projects

1. Write a brief biography of Hilbert.
2. Describe Hilbert’s characterization of the real numbers as a complete, ordered, archime-

dean eld. What geometric purpose was it intended to serve?
3. Discuss several propositions in Euclid’s Elements dealing with number theory.
4. Discuss several propositions in Book II of the Elements which correspond to algebraic 

results.
5. Skech a “proof”, using axioms in Euclid’s Elements, that every triangle is equilateral. 

Where is the error to be found? How is it to be corrected?
6. What was the fate of Euclid’s ve postulates in Hilbert’s Foundations of Geometry? See for 

example [6].
7. Discuss Hilbert’s “Axioms of Betweenness” andsome of the uses he made of them.
8. Discuss Pasch’s axioms for projective geometry.
9. Describe how the (algebraic) concept of a “ring” arose in the late nineteenth and the early 

twentieth centuries. See [7, 8].
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nonconstructive proofs that they inform the world that a treasure exists without disclosing its 
location [14,p. 103].

On the other hand, the proofs of the intuitionists are certainly acceptable to the formalists. 
Many results in analysis, and more recently in algebra, have been reconstructed, thanks to the 
pioneering eort of Errett Bishop (1928–1983), using nitistic methods [2]. For example, as 
early as 1924 Brouwer and Weyl gave constructive proofs yielding a root of a complex polyno-
mial—but actually nding such a root may require up to 1010 years! Yuri Manin, a prominent 
Russian mathematician, suggests that the mathematician “should at least be willing to admit 
that proof can have objectively dierent ‘degrees of proofness’” [16, p. 17].

10.8 Conclusion

e dierences between the formalists and the intuitionists on the one hand, and their nine-
teenth-century forerunners on the other hand, were genuine. For the rst time, mathemati-
cians were seriously and irreconcilably divided over what constitutes a proof in mathematics. 
Moreover, this division seems to have had an impact on the work that at least some mathema-
ticians chose to pursue, as the testimony of two of the most prominent practitioners of that 
epoch—John von Neumann and Hermann Weyl, respectively—indicates:

 »In my own experience… there were very serious substantive discussions as to what the 

fundamental principles of mathematics are; as to whether a large chapter of mathematics is 

really logically binding or not…. It was not at all clear exactly what one means by absolute 

rigor, and specically, whether one should limit oneself to use only those parts of math-

ematics which nobody questioned. Thus, remarkably enough, in a large fraction of math-

ematics there actually existed dierences of opinion! [, p. ].

Outwardly it does not seem to hamper our daily work, and yet I for one confess that it has 

had a considerable practical inuence on my mathematical life. It directed my interests to 

elds I considered relatively ‘sae’, and has been a constant drain on the enthusiasm and 

determination with which I pursued my research work [, p. ].

Hermann Weyl (–)
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Among the results unacceptable to the intuitionists is the law of trichotomy: Given any real number 
N, either N  > 0 or N = 0 or N<  0. e following example substantiates that point [10, p. xx]:

Dene a real number N as follows: N
a
n

n

n

=

=

∞

∑
102

, where

e denition of N is acceptable to both the formalists and the intuitionists; its digits can be 
calculated—at least in theory—to any degree of accuracy. But to the intuitionists, none of N >0, 
N < 0, or N = 0 is meaningful since it is not known if Goldbach’s conjecture (that every even 
number greater than 2 is a sum of two primes) is true or false. us the law of trichotomy fails.

10.7 Nonconstructive Proofs

A prominent feature of nineteenth-century mathematics was nonconstructive existence 
proofs—which were almost unknown before that time. us Gauss proved the “Fundamental 
eorem of Algebra” about the existence of roots of polynomial equations without showing how 
to nd them. Augustin-Louis Cauchy and others proved the existence of solutions of dierential 
equations without providing the solutions explicitly. Cauchy proved the existence of the integral 
of an arbitrary continuous function, but was oen unable to evaluate integrals of specic func-
tions. He gave tests of convergence of series without indicating what they converge to. Late in 
the century Hilbert proved the existence of, but did not explicitly construct, a nite basis for any 
ideal in a polynomial ring. Richard Dedekind constructed the real numbers by using completed 
innities. Such examples abound. All were rejected by the intuitionists. Hermann Weyl said of 
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2.1 Introduction

Several ancient civilizations—the Babylonian, Egyptian, Chinese, and Indian—dealt with the 
solution of polynomial equations, mainly linear. e Babylonians (ca. 1600 BC .) were partic-
ularly procient “algebraists”. ey were able to solve quadratic equations, as well as equations 
that lead to quadratics—for example, x + y = aand x2 + y2 = b—by methods similar to ours. e 
equations were given in the form of “word problems”, and were oen expressed in geometric 
language. Here is a typical example [7, p. 24]:

 »I summed the area and two-thirds of my square-side and it was ; [/ in sexagesimal 

notation]. [What is the side of my square?]

In modern notation, the problem is to solve the equation x2 + (2/3)x = 35/60. See [7, p. 24] for 
the Babylonians’ solution of this equation.

e Chinese (ca. 200 BC .) and the Indians (ca. 600 BC .)—in each case the dates are 
very rough—made considerable advances in algebra. For example, both allowed negative coef-
cients in their equations—though not negative roots—and admitted two roots for a quadratic 
equation. ey also described procedures for manipulating equations. e Chinese had meth-
ods for approximating roots of polynomial equations of any degree, and they solved systems of 
linear equations using “matrices” (rectangular arrays of numbers) well before such techniques 
were developed in Western Europe. e mathematics of the ancient Greeks, in particular their 
geometry and number theory, was relatively advanced, but their algebra was rather weak. (Note 
however that Diophantus (. ca. 250 AD), in his great number-theoretic work Arithmetica, 
introduced various algebraic symbols [1].) Book II of Euclid’s remarkable work Elements (ca. 
300 BC) presents, in geometric language, results which are familiar to us as algebraic, but most 
modern scholars believe that the Greeks of this period were not thinking algebraically.

Islamic mathematicians made important contributions in algebra between the ninth and 
eenth centuries. Among the foremost was Muhammad ibn-Mūsā al-Khwārizmī, dubbed by 
some “the Euclid of algebra” because he systematized the subject as it then existed and made 
it into an independent eld of study. He did this in his book al-jabr w al-muqabalah. “Al-jabr”, 
from which stems ourword “algebra”, denotes the moving of a negative term of an equation to 
the other side so as to make it positive, and “al-muqabalah” refers to cancelling equal ( positive) 
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Although Gödel’s results are of fundamental philosophical consequence, they have not af-
fected the daily work of most mathematicians, although “it is most likely safe to say that no 
mathematical theorem has aroused as much interest among nonmathematicians as Gödel’s 
Incompleteness eorem[s]” [9, p. 1].

10.5 Mathematics and Faith

Just as in the nineteenth century, following the invention of noneuclidean geometries, noncom-
mutative algebras, and other developments, mathematics lost its claim to (absolute) truth (see 
7 Chapter ), so in the twentieth century, following Gödel’s incompleteness theorems, it lost 
its claim to certainty.  In the nineteenth century truth in mathematics was replaced by valid-
ity (relative truth), and in the twentieth century certainty was replaced by faith. For a formal, 
twentieth-century notion of truth in mathematics and its relation to proof see [19].

Mathematics and faith? Surely the two are incompatible. But the mathematician Howard 
Eves (1911–2004) makes the case for such an association, on the following grounds. First, a 
denition of religion, by the mathematician Frank De Sua (1921–2013) [3, p. 305]:

 »Religion is any discipline whose foundations rest on an element of faith, irrespective of any 

element of reason which may be present.

For example, quantum mechanics would be a religion under this denition. But, given Godel’s 
result, that for many systems there are truths expressible in that system which are not provable, 
it follows that:

 »Mathematics is the only branch of theology possessing a rigorous demonstration of the fact 

that it should be so classied [, p. ].

See [7].

10.6 Intuitionism

e intuitionists, headed by Luitzen Egbertus Jan Brouwer, claimed that no formal analysis 
of axiomatic systemsis necessary. In fact, mathematics should not be founded on systems of 
axioms. e mathematicians’ intuition, beginning with that of number, will guide them in 
avoiding contradictions. ey must, however, pay special attention to denitions and methods 
of proof. ese must be constructive and nitistic. In particular, the law of the excluded middle, 
completed innities, the axiom of choice, and proof by contradiction are all outlawed. Hilbert 
protested that

 »taking the principle of the excluded middle from the mathematician would be the same, 

say, as proscribing the telescope to the astronomer or to the boxer the use of his sts 

[, p. ].

10.6 •  Intuitionism
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terms on the two sides of an equation. ese are of course basic procedures for solving polyno-
mial equations. al-Khwārizmī, from whose name is derived the word “algorithm”, applied these 
procedures to the solution of quadratic equations, which he classied into ve types: ax2 = bx, 
ax2 = b, ax2 + bx = c, ax2 + c = bx, and ax2 = bx + c. is categorization was necessary since al-
Khwārizmī did not admit negative coecients or zero into the number system. He also had no 
algebraic notation, so that his problems and solutions were expressed rhetorically (in words). 
He did however oer (geometric) justication for his solution procedures.

2.2 Cubic and Quartic Equations

e Babylonians (as we mentioned) were solving quadratic equations by about 1600 BC, using 
essentially an equivalent of our “quadratic formula”. A natural question was therefore whether 
cubic equations could be solved using “similar” formulas; three thousand years would pass be-
fore the answer was discovered. It was a great event in algebra when mathematicians of the six-
teenth century succeeded in solving—by radicals—not only cubic but also quartic equations. 
is accomplishment was very much in character with the mood of the Renaissance—which 
wanted not only to absorb the classic works of the ancients but to strike out in new directions. 
Indeed, the solution of the cubic unquestionably proved a far-reaching departure.

A “solution by radicals” of a polynomial equation is a formula giving the roots of the equa-
tion in terms of its coecients. e only permissible operations to be applied to the coecients 
are the four algebraic operations (addition, subtraction, multiplication, and division) and the 
extraction of roots (square roots, cube roots, and so on, that is, “radicals”). For example, the 

quadratic formula x
b b ac

a
=
− ± −

2
4

2

 is a solution by radicals of the equation ax2 + bx + c = 0.

A solution by radicals of the cubic was rst published in 1545 by Girolamo Cardano, in his 
Ars Magna (e Great Art, referring to algebra); it was discovered earlier by Scipione del Ferro 
and by Niccolò Tartaglia. e latter had passed on his method to Cardano, who had promised 
that he would not publish it; but he did. at is one version of events, which involved consider-
able drama and passion. A blow-by-blow account is given by Oysten Ore [12, pp. 53–107]. Here 
is Cardano’s own rendition [7, p. 63]:

 » Scipio Ferro of Bologna well-nigh thirty years ago [i.e., ca. ] discovered this rule and 

handed it on to Antonio Maria Fior of Venice, whose contest with Nicolò Tartaglia of Brescia 

gave Nicolò occasion to discover it. He [Tartaglia] gave it to me in response to my entreaties, 

though withholding the demonstration. Armed with this assistance, I sought out its demon-

stration in [various] forms. This was very dicult.

What came to be known as “Cardano’s formula” for the solution of the cubic x3 = ax + b is given 
by

x
b b a b b a= + ( ) − ( ) + − ( ) − ( )
2 2
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10.4 Gödel’s Incompleteness Theorems

Hilbert’s grand design was laid to rest by Kurt Gödel’s two incompleteness theorems of 1931. 
ese showed the inherent limitations of the axiomatic method:
1. e consistency of a large class of axiomatic systems, including those for arithmetic and 

set theory, cannot be established within the systems.
2. Moreover, any such system which is consistent must be incomplete. at is, given an axi-

omatic system, there will always be true results which are expressible in that system, but 
which cannot be established within the system.

For more technical statements, see [3, 8].
In connection with the rst result, Weyl remarked: “God exists since mathematics is con-

sistent and the devil exists since we cannot prove the consistency” [14, p. 1206]. (at math-
ematics is consistent is of course an article of faith of every working mathematician; see below.) 
e second result has elicited the (apparently anonymous) comment that Gödel gave a formal 
demonstration of the inadequacy of formal demonstrations.

Kurt Gödel (–)

David Hilbert (–)

10
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See for example [1, 2, 5]. Several comments are in order:
i. Cardano used essentially no symbols, so his “formula” giving the solution of the cubic was 

expressed rhetorically.
ii. He was usually content with determining a single root of a cubic. But in fact, if a proper 

choice is made of the cube roots involved, all three roots of the equation can be deter-
mined from his formula.

iii. e coecients and roots of the cubics he considered were specic positive numbers, so 
that he viewed (say) x3 = ax + b and x3 + ax = b as distinct. He devoted a chapter to the solu-
tion of each, and gave geometric justications [13, p. 63 .].

iv. Negative numbers are found occasionally in his work, but he mistrusted them, and called 
them “ctitious”. Irrational numbers were admitted as roots.

e solution by radicals of polynomial equations of the fourth degree—quartics—soon fol-
lowed. e key idea was to reduce the solution of a quartic to that of a cubic. Ludovico Ferrari 
was the rst to solve such equations, and his work was included in Cardano’s e Great Art [4].

It should be pointed out that cubic equations had arisen—in geometric guise—already 
in ancient Greece (ca. 400 BC), in connection with the problem of trisecting an angle, and 
that methods for nding approximate roots of cubics and quartics were known, for example 
by Chinese and Moslem mathematicians, well before such equations were solved by radicals. 
e latter solutions, though exact, were of little practical value. But the ramications of these 
“impractical” ideas were very signicant, and will now be briey sketched.

2.3 Beyond the Quartic: Lagrange

Having solved the cubic and quartic by radicals, mathematicians turned to nding a solution 
by radicals of the quintic (degree-ve polynomial)—a quest that would take nearly 300 years. 
Some of the most distinguished mathematicians of the seventeenth and eighteenth centuries, 
among them François Viète, René Descartes, Gottfried Wilhelm Leibniz, Leonhard Euler, and 
Étienne Bezout, tackled the problem. e strategy was to seek new approaches to the solutions 
of the cubic and quartic, in the hope that at least one of them would generalize to the quintic. 

Girolamo Cardano (–)  
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ngers” [4, p. 272]. Moreover there were serious technical diculties in the implementation of 
the logicist thesis. See [6, 13].

10.3 Formalism

e most serious debate within the mathematical community—it is still unresolved—has been 
between the adherents of the formalist and intuitionist schools. e formalist thesis, whose 
main exponent was Hilbert, views mathematics as a study of axiomatic systems. Both the 
primitive terms and the axioms of such a system are considered to be strings of symbols to 
which no meaning is to be attached. ese are to be manipulated according to established rules 
of inference to obtain the theorems of the system.

At the time Hilbert advanced his thesis (the 1920s), the axiomatic method (see 7 Chapter ) 
had embraced much of algebra, arithmetic, analysis, set theory, and mathematical logic. Even 
though Ernst Zermelo’s axiomatization of set theory in 1908 seemed to have avoided the para-
doxes of that theory (see [17] and 7 Chapter ), there was no assurance that they would not 
resurface in one form or another. As Poincaré remarked [15, p. 1186]:

 »We have put a fence around the herd to protect it from the wolves but we do not know 

whether some wolves were not already within the fence.

Hilbert felt that this possibility, and the denial of meaning to the primitive terms and postulates 
of axiomatic systems, made it imperative to undertake a careful analysis of such systems in 
order to establish their consistency. e methods by which this was to be accomplished were 
acceptable also to the intuitionists. ese methods came to be known as “metamathematics” or 
“proof theory”. See [3, 10].

e formalists have been accused of removing all meaning from mathematics and reducing 
it to symbol manipulation. Hilbert’s aim, however, was to deal with the foundations, rather than 
with the daily practice of the mathematician. And to show that mathematics is free of incon-
sistencies one rst needed toformalize the subject, the formalists claimed. is was formalism 
in the service of informality.

Bertrand Russell (–)
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But to no avail: although new ideas for solving the cubic and quartic were found, they did not 
yield the desired extensions. One approach, however, undertaken by Joseph Louis Lagrange in 
a paper of 1770 entitled Reections on the Algebraic Solution of Equations, proved promising. 
Lagrange analyzed the various methods devised by his predecessors for solving cubic and quar-
tic equations, and saw that—since those methods did not work when applied to the quintic—a 
deeper scrutiny was required. In his own words [14, p. 127]:

 » I propose in this memoir to examine the various methods found so far for the algebraic so-

lution of equations, to reduce them to general principles, and to let us see a priori why these 

methods succeed for the third and fourth degree, and fail for higher degrees.

Here are some of the key ideas of Lagrange’s approach. With each polynomial equation of arbi-
trary degree n he associated a “resolvent equation”, as follows: let f(x) be the original equation, 
with roots x1, x2, x3, …, xn. (As is the usual practice, we denote by “f(x)” both the polynomial 
and the polynomial equation.) Pick a rational function R(x1, x2, x3, …, xn) of the roots and 
coecients of f(x). (Lagrange described a method for doing this.) Consider the dierent values 
which R(x1, x2, x3, …, xn) assumes under all the n! permutations of the roots x1, x2, x3, …, xn of 
f(x). If these values are denoted by y1, y2, y3, …, yk, the “resolvent equation” is (x − y1)(x − y2)…
(x − yk). Lagrange showed that k divides n!—the source of what we call “Lagrange’s theorem” 
in group theory.

For example, if f(x) is a quartic with roots x1, x2, x3, x4, then R(x1, x2, x3, x4) may be taken 
to be x1 x2 + x3x4, and this function assumes three distinct values under the 24 permutations of 
x1, x2, x3, and x4. us, the resolvent equation of a quartic is a cubic. However, in carrying over 
this analysis to the quintic, Lagrange found that the resolvent equation is of degree six, rather 
than the hoped-for degree four.

Although Lagrange did not succeed in settling the problem of the solvability of the quintic 
by radicals, his work was a milestone. It was the rst time that an association was made between 
the solutions of a polynomial equation and the permutations of its roots. In fact, Lagrange 
speculated that the study of the permutations of the roots of an equation was the cornerstone 
of the theory of algebraic equations—“the genuine principles of the solution of equations”, as 
he put it [14, p. 146]. He was of course vindicated in this by Evariste Galois.

Joseph Louis Lagrange (–) 
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I believe that the numbers and functions of analysis are not the arbitrary product of our 

minds; I believe that they exist outside of us with the same character of necessity as the ob-

jects of objective reality; and we nd or discover them and study them as do the physicists, 

chemists and zoologists [, p. ].

e above three quotations, from Charles Hermite in 1893, Henri Poincaré in 1899, and again 
Hermite in 1905, respectively, are a reaction to various examples of “pathological” functions 
introduced during the previous half-century: integrable functions with discontinuities dense 
in any interval, continuous nowhere-dierentiable functions, nonintegrable functions that are 
limits of integrable functions, and others.

 » Later generations will regard Mengenlehre [Set Theory] as a disease from which one has 

recovered [, p. ].

is is Poincaré again, speaking (in 1908) about Cantor’s creation of set theory, especially 
in connection with the paradoxes that had arisen in the theory [17, 18]. Compare Poincaré’s 
position with that of David Hilbert, the other giant of this period:

 » No one shall expel us from the paradise which Cantor created for us [, p. ].

e above sentiments, expressed by some of the leading mathematicians of the period, suggest 
an impending crisis. Although mathematical controversies had arisen before the nineteenth 
century, for example the vibrating-string controversy between d’Alembert and Euler, these 
were isolated cases. e frequency and intensity of the disaection expressed in the nineteenth 
century were unprecedented and could no longer be ignored. e result was a split among 
mathematicians concerning the way they viewed their subject—its nature, meaning, and meth-
ods. e formal expression of that split was the rise in the early twentieth century of three 
schools of mathematical thought, three philosophies of mathematics—logicism, formalism, 
and intuitionism.

10.2 Logicism

e logicist thesis, expounded in the monumental Principia Mathematica of Bertrand Russell 
and Alfred North Whitehead, held that mathematics is part of logic. Mathematical concepts 
are expressible in terms of logical concepts; and mathematical theorems are tautologies, true 
by virtue of their form rather than their factual content. is thesis was motivated, in part, by 
the paradoxes in set theory, by the work of Gottlob Frege on mathematical logic and the foun-
dations of arithmetic, and by the espousal of mathematical logic by Giuseppe Peano and his 
school. Its broad aim was to provide a foundation for mathematics. Although the logicist thesis 
was important philosophically and inspired subsequent work in mathematical logic, it was not 
embraced by the mathematical community. For one thing, it did not grant reality to mathemat-
ics other than in terms of logical concepts. For another, it took “forever” to obtain results of 
any consequence; for example, it is only on p. 362 of the Principia that Russell and Whitehead 
show that 1 + 1 = 2 (!); see [4, p. 334]. “If the mathematical process were really one of strict, logi-
cal progression”, observe Richard A. De Millo (1947–) et al., “we would still be counting on our 
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2.4 Runi, Abel, Galois

Paolo Runi and Niels-Henrik Abel proved (in 1799 and 1826, respectively) the unsolvability 
by radicals of the “general quintic”. In fact, they proved the unsolvability of the “general equa-
tion” of degree n for every n >  4. ey did this by building on Lagrange’s pioneering ideas on 
resolvents. Lagrange had shown that a necessary condition for the solvability of the general 
polynomial equation of degree n is the existence of a resolvent of degree less than n. (A “general 
equation” is an equation with arbitrary literal coecients.) Runi and Abel showed that such 
resolvents do not exist for any n >  4. (Abel proved this result without knowing of Runi’s work; 
in any case, Runi’s work had a signicant gap.)

Although the general polynomial equation of degree  >  4 is unsolvable by radicals, some 
specic equations of this form are solvable; for example, xn − 1 = 0 is solvable by radicals for 
every n >  4. Galois characterized those equations that are solvable by radicals in terms of group 

theory: A polynomial is solvable by radicals if and only if its “Galois group” is “solvable”. To 
prove this result Galois founded the elements of permutation group theory and introduced in it 
various important concepts, such as Galois group, normal subgroup, and solvable group. us 
ended, in the early 1830s, the great saga—beginning with Cardano in 1545—of solvability by 
radicals of equations of degrees greater than 2.

2.5 Complex Numbers: Birth

A hugely important development arising from the solution of the cubic by radicals was the 
introduction of complex numbers.

Recall that Cardano’s solution of the cubic xaxb
3
=+ is given by

x
bbabba

=+()−()+−()−() 22

2

3

3
3

22

2

3

3
3

.

Evariste Galois (–)  
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10.1 Introduction

e nineteenth century witnessed a gradual transformation of mathematics—in fact, a gradual 
revolution, if that is not a contradiction in terms. Mathematicians turned more and more for 
the genesis of their ideas from the sensory and empirical to the intellectual and abstract. Al-
though this subtle change already began in the sixteenth and seventeenth centuries with the 
introduction of such nonintuitive concepts as negative and complex numbers, instantaneous 
rates of change, and innitely small quantities, these were oen used (successfully) to solve 
physical problems and thus elicited little demand for justication.

But in the nineteenth century the introduction of noneuclidean geometries, noncommuta-
tive algebras, continuous nowhere-dierentiable functions, space-lling curves, n-dimensional 
geometries, completed innities of dierent sizes, and the like, could no longer be justied by 
physical utility. Georg Cantor’s dictum that “the essence of mathematics is its freedom” [4, 
p. 448] became a reality—but one to which many mathematicians took strong exception, as the 
following quotations indicate (see 7 Chapters , , ).

 »There is still something in the system [of quaternions] which gravels me. I have not yet any 

clear view as to the extent to which we are at liberty arbitrarily to create imaginaries and to 

endow them with supernatural properties [, p. ].

e reservations are those of John Graves, who communicated them to his friend William 
Rowan Hamilton in 1844, shortly aer the latter had invented the quaternions. e “supernatu-
ral properties” referred to the noncommutativity of multiplication of the quaternions.

 »Of what use is your beautiful investigation regarding π? Why study such problems since 

irrational numbers are nonexistent? [, p. ] (But see [, p. ].)

is was Leopold Kronecker’s damning praise of Carl Louis Ferdinand Lindemann, who 
proved in 1882 that π is transcendental, hence that the circle cannot be squared using straight-
edge and compass.

 »I turn away with fright and horror from this lamentable evil of functions without derivatives 

[, p. ].

Logic sometimes makes monsters. For half a century we have seen a mass of bizarre func-

tions which appear to be forced to resemble as little as possible honest functions which 

serve some purpose [, p. ].



 Chapter 2 • Solution by Radicals of the Cubic

Consider the cubic x x
3

9 2= + . Its solution, using the above formula, is

What is one to make of this solution? Since Cardano was suspicious of negative numbers—
calling them “ctitious” [10, p. 40]—he certainly had no taste for their square roots, which he 
named “sophistic negatives” [10, p. 40]. He therefore regarded his formula as inapplicable to 
equations such as x3 = 9x + 2. Judged by past experience, this was not an unreasonable attitude. 
For example, to pre-Renaissance mathematicians the quadratic formula could not be applied 
to x2 + 1 = 0.

All this changed when the Italian Rafael Bombelli came on the scene. In his important 
book Algebra (1572) he applied Cardano’s formula to the equation x3 = 15x + 4 and obtained 

x = + − + − −2 121 2 121
3 3 . But he could not dismiss this solution, unpalatable as it would 

have been to Cardano, for he noted—by inspection—that x = 4 is also a root of this equation; 

its other two roots, − ±2 3,  are also real numbers. Here was a paradox: while all three roots of 
the cubic x3 = 15x + 4 are real, the formula used to obtain them involved square roots of negative 
numbers—meaningless at the time. How was one to resolve the paradox?

Bombelli had a “wild thought”: since the radicands 2 121+ −  and 2 121− −  dier only 
in sign, the same might be true of their cube roots. He thus let

and proceeded to solve for a and b by manipulating these expressions according to the established 

rules for real variables. He deduced that a = 2 and b = 1 and thereby showed that, indeed,

Bombelli had given meaning to the “meaningless”. He put it thus [11, p. 19]:

 » It was a wild thought in the judgment of many; and I too for a long time was of the same 

opinion. The whole matter seemed to rest on sophistry rather than on truth. Yet I sought so 

long, until I actually proved this to be the case.

Moreover, Bombelli developed a “calculus” for complex numbers, stating such rules as 
+ −( ) + −( ) = −1 1 1 and + −( ) − −( ) =1 1 1, and dened addition and multiplication of 

some of these numbers. ese innovations signaled the birth of complex numbers.
But note that this is a retrospective view of what Bombelli had done. He did not postulate 

the existence of a system of numbers—called complex numbers—containing the real numbers 
and satisfying basic properties of numbers. To him, the expressions he worked with were just 
that; they were important because they “explained” hitherto inexplicable phenomena. Square 

roots of negative numbers could be manipulated in a meaningful way to yield signicant results. 
is was a bold idea indeed. See [8, 10].

x = + − + − − = + − + − −
2
2

2
2

2 9
3

33 2
2

2
2

2 9
3

33 3 3
1 26 1 26( ) ( ) ( ) ( ) .

3 3
2 121 1, 2 121 1,a b a b+ − = + − − − = − −

x = + − + − − = + − + − − =2 121 2 121 2 1 2 1 4
3 3

( ) ( ) .
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.6 •  Growth

e equation x3 = 15x + 4 considered above is an example of an “irreducible cubic”, one with 
rational coecients, irreducible over the rationals, all of whose three roots are real and distinct. 
It was shown in the nineteenth century that any solution by radicals of such a cubic—not just 
Cardano’s—must involve complex numbers [5, 10]. us complex numbers are unavoidable 
when determining solutions by radicals of irreducible cubics. It is for this reason that they arose 
in connection with the solution of cubic rather than (as seems much more plausible) quadratic 
equations. Note that the nonexistence of a solution of the quadratic x2 + 1 = 0 was accepted for 
centuries.

2.6 Growth

Here are several examples of the penetration of complex numbers into mathematics in the 
centuries aer Bombelli.

As early as 1620, Albert Girard suggested that an equation of degree n may have n roots. 
Such statements of the “Fundamental eorem ofAlgebra” were however vague and unclear. 
For example Descartes, who coined the unfortunate term “imaginary” for the new numbers 
(Gauss called them “complex”), stated that although one can imagine that every equation has 
as many roots as is indicated by its degree, no (real) numbers correspond to some of these 
imaginedroots.

Leibniz, who spent considerable time and eort on the question of the meaning of complex 
numbers and the possibility of deriving reliable results by applying the ordinary laws of algebra 
to them, thought of complex roots as “an elegant and wonderful resource of divine intellect, an 
unnatural birth in the realm of thought, almost an amphibium between being and non-being” 
[11, p. 159].

Complex numbers were used by Johann Heinrich Lambert for map projection, by Jean le 
Rond d’Alembert in hydrodynamics, and by Euler, d’Alembert, and Lagrange in (incorrect) 
proofs of the Fundamental eorem of Algebra.

Euler made important use of complex numbers in, for example, number theory and 
analysis; he also linked the exponential and trigonometric functions and, arguably, the ve 
most important numbers in mathematics in, respectively, the following two famous formulas: 
exix
ix
=+ cossin and 

i
e10
π
+=. (Euler was the rst to designate −1 by “i”.) Yet he said of 

them [9, p. 594]:

Rafael Bombelli (–)  
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ere is much to make sense of in the above statements. We will address in 7 Chapter  
some of the issues that arise. For now, let us point out that, with the appropriate correctives, 
set theory—the study of the transnite, the completed innite—is alive and well. Its creation, 
initially at the hands of Cantor, followed by many other brilliant mathematicians, is one of the 
great turning points in the history of mathematics. It is important for students to internalize 
the following implications (among others) of transnite arithmetic—all so contrary to their 
past experience.
1. e innite is not merely the absence of the nite, nor is it merely “a manner of speaking”. 

It is a precise mathematical concept, giving rise to a rich and deep theory.
2. e whole need not be greater than its parts. In fact, the whole is equal to innitely many 

of its parts.
3. ere are arithmetics which disobey such fundamental laws as cancellation under addi-

tion and multiplication, as well as the commutative laws of addition and multiplication; 
see “Problems and Projects”, no. 8.

4. Innity comes in dierent sizes—in fact, in innitely many dierent sizes.

Problems and Projects

1. Describe the Achilles, Arrow, and Stadium paradoxes, proposed by Zeno.
2. Describe briey the philosophy of Parmenides.
3. Discuss the impact of Zeno’s paradoxes on Greek mathematics.
4. Describe some of the theological and philosophical discussions related to the innite. See 

[4, 6, 12, 13].
5. Discuss briey Cantor’s life and some of his work (other than that discussed in this 

 chapter).
6. Describe how Cantor’s work on trigonometric series gave rise to his interest in the 

 innite. See [2, 5–7, 15].
7. Show that every innite set contains a proper subset having the same cardinality as the 

original set. See [9].
8. What we have outlined in this chapter is the theory of cardinal numbers. ere is a paral-

lel, and arguably equally important, theory of ordinal numbers. In ordinal arithmetic, for 
example, 1 + ω ≠ ω + 1 for the ordinal ω (what is it?). Investigate the rudiments of ordinal 
arithmetic. See [3, 6, 7, 9, 12, 14].

David Hilbert (–)  

9



16 Chapter 2 • Solution by Radicals of the Cubic

 » Because all conceivable numbers are either greater than zero, less than zero or equal to 

zero, then it is clear that the square roots of negative numbers cannot be included among 

the possible numbers. Consequently we must say that these are impossible numbers. And 

this circumstance leads us to the concept of such numbers, which by their nature are im-

possible, and ordinarily are called imaginary or fancied numbers, because they exist only in 

the imagination.

Even the great Gauss, who in his doctoral thesis of 1797 gave the rst essentially correct proof 

of the Fundamental Teorem of Algebra, claimed as late as 1825 that “the true metaphysics of 

−1 is elusive” [9, p. 631]. But by 1831 Gauss had overcome these metaphysical scruples and, in 

connection with a work on number theory, published his scheme for representing them geo-

metrically, as points in the plane. Similar representations by Caspar Wessel in 1797 and by Jean 

Robert Argand in 1806 had gone largely unnoticed; but when given Gauss’ stamp of approval 

the geometric representation dispelled much of the mystery surrounding complex numbers.

Doubts concerning the meaning and legitimacy of complex numbers persisted for two and 

a half centuries following Bombelli’s work. Yet during that same period these numbers were 

used extensively. How can inexplicable things be so useful? Tis is a recurrent theme in the his-

tory of mathematics. Bombelli’s resolution of the paradox dealing with the solution of the cubic 

x3 = 15x + 4 is an excellent example of this phenomenon.

2.7 Maturity

In the next two decades further developments took place. In 1833 William Rowan Hamilton 

gave an essentially rigorous algebraic denition of complex numbers as pairs of real numbers, 

and in 1847 Augustin-Louis Cauchy gave a completely rigorous denition in terms of congru-

ence classes of real polynomials modulo x2 + 1. In this he modelled himself on Gauss’ denition 

of “congruences” for the integers. By the latter part of the nineteenth century most vestiges of 

mystery and distrust around complex numbers could be said to have disappeared [6].

But this is far from the end of their story. Various developments in mathematics in the 

nineteenth century gave us deeper insight into the role of complex numbers in mathematics 

and in other areas. Tese numbers oer just the right setting for dealing with many problems 

in mathematics in such diverse areas as algebra, analysis, geometry, and number theory. Tey 

have a symmetry and completeness that is oen lacking in the real numbers. Te following 

three quotations, by Gauss in 1811, Riemann in 1851, and Jacques Hadamard in the 1890s, re-

spectively, say it well:

 » Analysis … would lose immensely in beauty and balance and would be forced to add very 

hampering restrictions to truths which would hold generally otherwise, if … imaginary 

quantities were to be neglected [3, p. 31].

The original purpose and immediate objective in introducing complex numbers into math-

ematics is to express laws of dependence between variables by simpler operations on the 

quantities involved. If one applies these laws of dependence in an extended context, by 

giving the variables to which they relate complex values, there emerges a regularity and 

harmony which would otherwise have remained concealed [6, p. 64].

The shortest path between two truths in the real domain passes through the complex do-

main [9, p. 626].
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9.9 • Conclusion

n < 2n, we conjecture that c < 2c = the number of subsets of R, and, more generally, that for any set 

A, |A | < |P(A) |, where P(A) is the set of all subsets of A, called the “power set” of A. It is easy to 

see that |P(A) | is the number of functions f: A → {0, 1}.

To show that |A | < |P(A) |, note rst that |A | ≤ |P(A) |. If |A | = |P(A) |, then there exists a map 

f:A → P(A) which is 1–1 and onto. Let B b A b f b= ∈ ∉{ : ( )}. Since f is onto, pick a A∈  such that 

f (a) = B. en a B∈  if and only if a B∉ , a contradiction. us |A | < |P(A) |.

Note that the “operator” P can be iterated, so that we get an innite chain of increasing 

cardinal numbers, |A | < |P(A) | < |P(P(A)) | < ….. is seemingly blissful state of aairs leads to 

serious diculties. For if S = {all sets}, then for every set T, |T | ≤ |S |. In particular, |P(S) | ≤ |S |. 

But we have shown that |A | < |P(A) | for any set A. So |S | < |P(S) |. is is a contradiction—a 

paradox. It is a serious paradox, for it mandates a restricted notion of set. In particular, S = {all 

sets} is not a set, although one would have thought that any collection of objects is a set. S is 

simply too large. So we need to restrict the notion of set (see 7 Chapter 0).

e other question le open is whether there is a cardinal greater than ℵ0 and less than c. 

Cantor thought there is none, and tried to prove it, without success. It turns out that both “yes” 

and “no” are valid answers! is mysterious statement must be claried, of course; it will be, 

in 7 Chapter 0.

9.9 Conclusion

Other problems and paradoxes arose in the theory of sets in the decades following Cantor’s 

work. For example, consider the set S x x x= ∉{ : }. en S S∈  if and only if S S∉ . is is the 

famous Russell Paradox. A mathematical school arose which viewed the completed innite as 

taboo, as Aristotle had urged more than two millennia earlier. e potential innite will do 

just ne, that school argued. We can recover much of known mathematics without its use, they 

claimed. Poincaré, one of its outstanding early founders, declared that “later generations will 

regard [Cantor’s] set theory as a disease from which one has recovered” [10, p. 1003]. But this 

was a minority opinion. Hilbert, representing the majority view, countered: “No one shall expel 

us from the paradise which Cantor has created for us” [10, p. 1003].

Henri Poincaré (1854–1912) 
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.7 •  Maturity

We give brief indications of what is involved in welcoming complex numbers into mathematics.
In algebra, their introduction gave us the celebrated “Fundamental eorem of Algebra”: 

every equation with complex coecients has a complex root. e complex numbers oer an 
example of an “algebraically closed eld”, relative to which many problems in linear algebra and 
other areas of abstract algebra have their “natural” formulation and solution.

In analysis, the nineteenth century saw the development of a powerful and beautiful branch 
of mathematics: “complex function theory”. One indication of its ecacy is that a function in 
the complex domain is innitely dierentiable if once dierentiable—which of course is false 
for functions of a real variable.

In geometry, the complex numbers lend symmetry and generality to the formulation and 
description of its various branches, including euclidean, inversive, and noneuclidean geometry. 
For a specic example we mention Gauss’ use of complex numbers to show that the regular 
polygon of seventeen sides is constructible with straightedge and compass.

In number theory, certain diophantine equations can be solved using complex num-
bers. For example, the domain consisting of the set of elements of the form ab2i, + with 
a and b integers, has unique factorization, and in it the Bachet equation x2 + 2 = y3 factors as 
()()

3
x2ix2iy +−=. is greatly facilitates its solution (in integers).

An elementary illustration of Hadamard’s dictum that “the shortest path between two 
truths in the real domain passes through the complex domain” is supplied by the following 
proof that the product of sums of two squares of integers is again a sum of two squares of 
 integers; that is, given integers a, b, c, and d, there exist integers u and v such that 

()() abcduv
222222
++=+. For, ()()()()()()

2222
abcdabiabicdicdi ++=+−+−

()()()()()()
22

abicdiabicdiuviuviuv =++−−=+−=+  for some integers u and v. 
Try to prove this result without the use of complex numbers and without being given the u and 
v in terms of a, b, c, and d.

In addition to their fundamental uses in mathematics, complex numbers have become in-
dispensible in science and technology. For example, they are used in quantum mechanics and 
in electric circuitry. e “impossible” has become not only possible but essential [6].

Problems and Projects

1. Discuss the solution of the quartic by radicals.
2. Research the lives and work of two mathematicians discussed in this chapter.
3. Show how to trisect an angle using trigonometric functions.
4. Discuss the Italian Renaissance, including some of its accomplishments in mathematics 

(those not discussed in this chapter).
5. Describe the “geometric algebra” of the ancientGreeks.
6. Discuss the algebra of al-Khwārizmī.
7. Show how to solve an elementary problem in euclidean geometry using complex num-

bers.
8. Discuss the meaning of the logarithms of negative and complex numbers.
9. e “quaternions”(also known as “hypercomplexnumbers”) contain the complex num-

bers. Discuss some of their properties that are like those ofthe complex numbers and 
some that dier.

10. Show how to resolve the paradox of the irreducible cubic x3 = 15x + 4.

0 Chapter 9 • The Infnite: From Potential to Actual

9.7 Arithmetic

We can now perform—informally—some transnite arithmetic. Note that we dene the sum 

and product of cardinals as follows: If A and B are two sets, dene |||||| ABA ∪B and 

||||||, AxBA x B = picking, without loss of generality, A and B so that AB ∩=∅ (A x B is the 

Cartesian product of A and B, ∅ is the empty set).

Since both the natural numbers and the nonnegative integers are denumerable, ℵ=+ℵ 00 1; 

also ℵ=+ℵ 00 2, so that 12 +ℵ=+ℵ 00. Hence, by cancellation, 1 = 2. Another paradox? Not 

quite. Of course we should not expect the laws of transnite arithmetic to be identical to those 

of our daily arithmetic of nite numbers. In particular, the cancellation law under addition is 

invalid in transnite arithmetic.

We can show by induction that n+ℵ=ℵ 00. It is also easy to see that ℵ+ℵ=ℵ 000, since, 

for example, NEO, =∪ where each of the natural numbers (N), the even positive integers 

(E), and the odd positive integers (O) has cardinality ℵ0. As for multiplication, note that 

20000 xℵ=ℵ+ℵ=ℵ, so that 12 00 xx ℵ=ℵ. us cancellation under multiplication is also 

invalid in transnite arithmetic. We also have n xℵ=ℵ 00, by induction, and ℵ×ℵ=ℵ 000, 

since the rationals are pairs of integers. So ℵ=ℵ 0
2

0, and by induction, ℵ=ℵ 00

n
.

If we denote the cardinality of the real numbers by c (the continuum), we have shown that 

ℵ<0c. Since every line segment has cardinality c, it follows that c + c = c, and since the real and 

the complex numbers have the same cardinality, c × c = c. Now, 0 c  cccc, ≤+<+=  so that 

ℵ+= 0cc. Similarly, ℵ×= 0cc.

Two important problems that Cantor had to contend with were to determine the car-

dinalities of the irrational and the transcendental numbers. We show that they are both c. 

Denote the transcendental numbers by T and let t = | T |; then 0 ct|T||A|, =+=+  where A 

are the algebraic numbers. Now “peel o” ℵ0 elements from T, say T = J    K, where 0 |K|. = 

en cAJKAJKAJKTt, ==+=++=+== |||||||||||||||||||| T+∪ so that t = c. Now, 

if I denotes the irrationals, then, since T ≤ I, c = | T | ≤ | I | ≤ | R | = c, so | I | = c (R denotes the real 

numbers).

Transcendental numbers were dened by Euler in the eighteenth century, but the rst ex-

ample of such numbers was given by Joseph Liouville in 1844. Charles Hermite proved in 1873 

that e is transcendental, and Carl Louis Ferdinand Lindemann showed in 1882 that the same 

is true of π. (is last result implies that the circle cannot be squared.) Cantor (in 1874) proved 

the remarkable fact that there are more transcendental numbers than algebraic numbers. But he 

did not actually construct any transcendental numbers—his was an example of a “nonconstruc-

tive” existence proof. Such proofs were rejected by a number of very eminent mathematicians, 

among them Kronecker, Poincaré, Weyl, and Brouwer (see 7 Chapter 0).

9.8 Two Major Problems

e inequality ℵ0 < c posed two major problems for Cantor: are there cardinals between ℵ0 and 

c, and are there any beyond c? e second question is relatively easy to answer.

We take our cue from the nite case. Note that2110

nn

i

in

i
n

=+=()= =

=

∑ ()the number  

{} of subsets of1, 2, 3, , nthe …=number offunctions f    n   :,,,,,. 12301 … {}→{}
 

Since 

∪
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9.6 •  Paradoxes Regained

i. e even natural numbers.
ii. e integers.
iii. e positive rational numbers (nontrivial for students).
iv. e rational numbers.
v. e algebraic numbers.

An “algebraic number” is a complex number which is a root of a polynomial equation with 
integer coecients. ose complex numbers that are not algebraic are called “transcendental”. 
Algebraic numbers are generalizations of rational numbers: the rational number m/n is a root 
of the equation nx − m = 0, m and n integers. e algebraic numbers are important especially in 
number theory (see 7 Chapter ).

To show that the algebraic numbers can be listed in a sequence, we associate with each poly-
nomial a a x a x a x

2

n

n

0 1 2
+ + + +... , ai integers, the rational number 2 3 50 1 2a a a

n
a

p n× × × ×... , 
where pn is the (n + 1)-st prime. is mapping is a 1–1 correspondence between all polynomials 
with integer coecients and the positive rational numbers. Since each polynomial has nitely 
many roots, it follows that the algebraic numbers can be listed in a sequence.

We have given various examples of sets which can be listed in a sequence. We refer to these 
sets as “denumerable” or “countable”—sets which can be enumerated. ey all have the same 
cardinality, which we denote by ℵ0 (aleph subzero; “aleph” is the rst letter of the Hebrew al-
phabet). It is the smallest innite cardinal. More generally, the cardinality of a set S is denoted 
by |S|; then, given two innite sets S and T, |S| ≤ |T| if there exists a 1–1 correspondence between 
S and a subset of T. If |S| ≤ |T| but |S| ≠ |T|, then |S| < |T|.

9.6 Paradoxes Regained

Let us now consider some geometric examples of innite sets. We have seen that the points on 
two circles of unequal diameters have equal cardinality. It is therefore not surprising that any 
two line segments have the same cardinality. For example, the function f(x) 2x  x a,b= ∈, ( )  
gives a 1–1 correspondence between two intervals, one twice the other’s length. What is surpris-
ing (shocking?) is that the points on a line segment, no matter how small, and on the entire real 

line have the same cardinality. e mapping f(x) = tanx, − π/2 < x < π/2, gives a 1–1 correspon-
dence between the interval (− π/2, π/2) and the real line.

Another unexpected but fundamental result is that the real numbers are nondenumerable 
(uncountable), that is, their cardinality is greater than ℵ

0
. It was only aer fruitless attempts to 

prove the contrary that Cantor succeeded in establishing this. Here is a proof, though not Can-
tor’s. Suppose that the real numbers in the interval (0, 1) can be written in a sequence, say a1, a2, 
a3, …. Enclose each ai in an interval of length 1/10i. en the interval (0, 1) has been enclosed 
with intervals of total length 1/10 + 1/102 + 1/103 + … = 1/9, obviously a contradiction.

Yet another of Cantor’s results (proved in the 1870s) which was contrary to prevailing opin-
ion, and to “common sense”, was that the real numbers and the complex numbers have the same 
cardinality. He found this “astonishing”, given that the two sets are of dierent dimensions. 
He wrote to Richard Dedekind about it, exclaiming: “I see it but I don’t believe it” [7, p. 126]. 
We prove here an equivalent result, namely that the line segment A = (0, 1) and the square 
B = (0, 1) x (0, 1) have the same cardinality. Dene mappings f: A → B by f (0.r1r2r3 …) = (0.r1r3r5 …, 
0.r2r4r6 …) and g: B → A by g 0.b b b , 0.c c c = 0.b c b c b c1 2 3, 1 2 3 1 1 2 2 3 3… … …( ) ( ). With a little care 
to avoid duplication, these mappings establish a 1–1 correspondence between A and B.
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3.1 Introduction

Analytic geometry was invented independently by René Descartes and Pierre de Fermat in 
the rst half of the seventeenth century. (e term “analytic geometry” was coined by Syl-
vestre François Lacroix in 1792.) e independent and more or less simultaneous invention 
( discovery) of concepts, results, or even major theories is not uncommon in mathematics; two 
other outstanding instances are calculus and noneuclidean geometry (see 7 Chapters  and , 
respectively). As the mathematician Wolfgang Bolyai put it [1, p. 263]:

 »Mathematical discoveries, like springtime violets in the woods, have their season which no 

human can hasten or retard.

e analytic geometry of Fermat and Descartes did not originate in a vacuum. It drew inspira-
tion from the Greek geometric tradition and, such as that was, the Renaissance algebraic tradi-
tion. e use of coordinates to designate position is possibly prehistoric, and appears in ancient 
Greek astronomy. Apollonius’ great work Conics (ca. 250 BC) contains what are essentially the 
equations of these curves with respect to a xed coordinate system, although not, of course, 
in modern notation. Furthermore, graphical representation of physical laws goes back to the 
scholar Nicole Oresme (ca. 1320–1382). What then was le for Descartes and Fermat to do? It 
was
(a) to recognize the following as a basic principle of analytic geometry: that to each geomet-

ric plane curve corresponds an equation in two unknowns, and, conversely, that to each 
equation involving two unknowns corresponds a curve; and

(b) to develop this principle into an algorithmic procedure, showing how it can be used to 
solve problems in geometry.

3.2 Descartes

Descartes wanted to devise a systematic method for the solution of geometric problems, espe-
cially those dealing with curves. Such a study received impetus from scientic developments in 
the early seventeenth century: Kepler’s use of conic sections in his study of planetary motion, 
Galileo’s use of parabolas to describe the motion of projectiles, and the use of curved lenses in 
the newly invented telescope andmicroscope.

 Chapter 9 • The Innite: From Potential to Actual

To give substance to his evolving ideas on the innite, Cantor devised an arithmetic of com-
pleted innities, a so-called transnite arithmetic. e crucial idea, the cornerstone of his 
arithmetic, is the concept (used above, informally) of “1–1 correspondence”, the comparison 
of sets “for size”. If to each element of a set A there corresponds exactly one element of a set B, 
and conversely, to each element of B there corresponds a unique element of A, then a 1–1 cor-
respondence between A and B is said to have beenestablished, and the two sets are deemed to 
have the same number of elements, the same “cardinality”. 

9.4 Paradoxes Lost

is denition resolves Galileo’s dilemma: the natural numbers and their squares do indeed 
have the same cardinality, for we can set up a 1–1 correspondence between them, as Galileo had 
done. e same goes for any two circles of unequal diameter: they too have the same cardinality. 
So these two examples do not give rise to paradoxes. Zeno’s paradoxes are of a dierentsort, 
much more subtle than the others, claim some philosophers, who have been debating them, 
without resolution, for centuries [12].

What about the doctrine that “the whole is greater than any of its parts”, employed implicitly 
by Galileo and the medieval scholars in arriving at their respective paradoxes? is doctrine 
is one of Euclid’s common notions (axioms) given in his formulation of axiomatic geometry 
(see 7 Chapter ). It makes perfectly good sense for nite sets, but it must be abandoned for 
innite sets. In fact Euclid’s doctrine never holds for innite sets: every innite set contains a 
proper subset having the same cardinalityas the original set. We can take this property to be 
the denition ofinnite sets: a set S is “innite” if it contains a proper subset with cardinality 
equal to that of S.

9.5 Denumerable (Countable) Innity

Now to some examples. e elements of each of the sets below can be listed in a sequence (not 
necessarily bysize), beginning with a rst, second, third, and so on; hence the cardinality of 
each of these sets is the same as that of the natural numbers, 1, 2, 3, ….

Georg Cantor (–)  

9
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But the main motivation for the creation of analytic geometry came not from practical 
problems but from a desire to systematize the ancients’ problem-solving tools. Descartes noted 
that many constructions and proofs in euclidean geometry called for new, inventive, and ad 
hoc approaches. He therefore undertook to exploit the power of algebra to provide a broad 
methodology for solving geometric problems.

Descartes was arguably the rst great “modern” philosopher, as well as a rst-rate math-
ematician and scientist. According to the distinguished historian of mathematics Henk Bos 
(1940–):

 » Descartes’ mathematics was a philosopher’s mathematics. From the earliest documented 

phase in his intellectual career, mathematics was a source of inspiration and an example for 

his philosophy, and, conversely, his philosophical concerns strongly inuenced his style and 

program in mathematics [, p. ].

His great mathematical work—Geometry (La Géométrie)—appeared as one of the appendices 
to his philosophical treatise Discourse on the Method of Reasoning Well and Seeking Truth in the 

Sciences. In the latter work he sought a way to establish truths in all elds of endeavor. Geom-
etry was identied as one of the three disciplines exhibiting that general method; the other two 
were meteorology and optics.

e essence of Descartes’ method in geometry is given in several places in his book; here 
is one [3, p. 90]:

 » All points of a geometric curve [as dened by motions] must have a denite relation ex-

pressed by an equation.

In his analysis of geometric problems Descartes admitted only certain types of curves, namely 
those dened by “motions” or by loci [9, p. 483]. As an application of this method, he singled 
out for special attention the so-called Problem of Pappus: given four straight lines, to nd 
the locus of a point that moves so that the product of its distances from two of the lines is 
in a xed ratio to the product of its distances from the other two lines [11, p. 128]. Descartes 

René Descartes (–) 

3
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Galileo concluded that the diculties arise because

 » We attempt, with our nite minds to discuss the innite, assigning to it those properties 

which we give to the nite and limited; but this … is wrong, for we cannot speak of innite 

quantities as being the one greater or less than or equal to another. [, p. ]

Further rejection of the actual innite came from Descartes, Spinoza, Leibniz, Hobbes, and 
Berkeley (see [1]). Even the great Gauss objected to its use, in a letter to his friend Schumacher 
in 1831:

 » I protest against the use of an innite quantity as an actual entity; this is never allowed in 

mathematics. The innite is only a manner of speaking, in which one properly speaks of 

limits to which certain ratios can come as near as desired, while others are permitted to 

increase without bound. [, p. ]

9.3 Cantor

Modern understanding of the mathematical innite is the almost singlehanded creation of 
Georg Cantor. Cantor urged that the old distinction between the potential and the actual in-
nite is dubious: “in truth the potentially innite concept has only a borrowed reality, insofar 
as a potentially innite concept always points toward a logically prior actually innite concept 
whose existence it depends on” [12, p. 3]. His revolutionary approach stems from 1870, when, on 
the urging of a colleague at the University of Halle, he started doing research on trigonometric 
series, following a PhD in number theory. Two years later, at the age of 27, he wrote a paper on 
the subject, in particular on the question of unique representation of functions in such series. 
He found that in this research he needed a proper understanding of the real numbers, which 
was then lacking. e result was his now well known representation of the reals as Cauchy 
(fundamental) sequences. e latter entailed an encounter with the actual innite, for a Cau-
chy sequence is an innite collection of rational numbers satisfying given conditions. While 
previously opposed to the notion of a completed innity (as was everyone else), Cantor soon 
realized that he could make little progress in his researches without accepting it. He set aside his 
work on trigonometric series to devote all his time to the development of what is now known as 
transnite set theory. Here are some of his thoughts on the matter [4, p. 211]:

 » It is traditional to regard the innite as the indenitely growing or in the closely related form 

of a convergent sequence, which it acquired during the seventeenth century. As against this 

I conceive the innite in the denite form of something consummated, something capable 

not only of mathematical formulation, but of denition by number. This conception of the 

innite is opposed to traditions which have grown dear to me, and it is much against my 

own will that I have been forced to accept this view. But many years of scientic speculation 

and trial point to these conclusions as to a logical necessity, and for this reason I am con-

dent that no valid objection could be raised which I would not be in position to meet.

1 2 3

1 4 9

4 5 6

16 25 36

     

…



…

.

..



213
. •  Fermat

showed that the locus is a conic section [7, p. 87]. is result was already known to the Greeks 
[2, 7 Chapter ]. To exhibit the substantial power of his method, Descartes generalized the 
Problem of Pappus to the case of 2n lines and derived the equation of the locus for small values 
of n; for n = 3, he showed that the equation is of degree 3. But he showed little interest in the 
shapes of the curves given by such equations. While the salient idea for the subsequent develop-
ment of mathematics was the association of equation and curve, for Descartes the idea was just 
a means to an end—the solution of geometric problems.

3.3 Fermat

By the beginning of the seventeenth century the extant Greek mathematical works had been 
restored and had elicited great interest. Fermat introduced his new method in geometry aer 
a careful study of the geometric works of Apollonius (ca. 225 BC) and Pappus (ca. 300 AD) 
and of the algebraic work of Viète. He noted that although the Greeks studied loci, they must 
have found them dicult,since some of the problems were not stated in fullgenerality. He 
proceeded to rectify this in a twenty-page work titled Introduction to Plane and Solid Loci. e 
basic principle of analytic geometry is stated at the outset [3, p. 75]:

 »Whenever in a nal equation two unknown quantities are found, we have a locus, the ex-

tremity of one of these describing a line, straight or curved.

e historian of mathematics Carl Boyer (1906–1976) referred to this sentence as “one of the 
most signicant statements in the history of mathematics”, for it introduced “not only analytic 
geometry, but also the immensely useful idea of an algebraic variable” [3, p. 75]. Fermat’s work 
had considerable inuence on, among others, Newton and Leibniz.

Pierre de Fermat (-)  
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9.2 Before Cantor

In the Middle Ages the few discussions of innity appeared mostly in theological contexts 
(cf. our expressions “God almighty” and “God, in his innite wisdom”). ere was however a 
mathematical example in the thirteenth century, aer scholars noted that two circles of unequal 
diameter have an equal number of points but (clearly) unequal perimeters. is was evidently 
a paradox. e former observation is ascertained by establishing a one-to-one correspondence 
which matches each point of one circle with exactly one point of the other: place the circles so 
that they are concentric, and then the 1-1 correspondence is established by having the center of 
the two circles play the crucial role [6]. (See . Figure .).

Our next encounter with the actual innite comes in the seventeenth century, at the dawn 
of the modern period in the history of mathematics. In his book DialoguesConcerning Two 

New Sciences (1638), Galileo Galilei pondered the contradictions that arise when one tries to 
compare (for “size”) the set of positive integers and the set of their squares. On the one hand, 
he argued, there are clearly more of the former than of the latter; on the other, one can set up a 
1–1 correspondence between the two sets of numbers which matches each element in the rst 
with a unique element in the second, as follows:

. Figure 9.1 Two concentric circles with 

unequal diameters but with equal numbers of 

points 

 

Aristotle (– BC)  

9
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e work of Fermat and Descartes had dierent emphases. While Descartes stressed the 
fact that curves can be represented by equations, Fermat’s point of departure was that inde-
terminate equations give rise to curves. He showed that equations of the rst degree with two 
variables describe straight lines, and he carefully analyzed equations of the second degree with 
two variables, showing that they represent various conic sections. Although he did not consider 
equations of degree higher than two, he clearly recognized the potential of the subject he was 
dealing with to produce new curves, as is evident from his statement that “the species of curves 
are indenite in number: circle, parabola, hyperbola, ellipse, etc.” [3, p. 79].

3.4 Descartes’ and Fermat’s Works from a Modern Perspective

Although the analytic geometry of Descartes and Fermat was groundbreaking, it was not in the 
form now familiar to us. In particular:
(a) Remarkably, a rectangular coordinate system and formulas for distance and slope are

missing. In fact, coordinate axes are not explicitly set forth. Only the horizontal axis ap-
pears explicitly in drawings, while the implicit vertical axis is usually oblique.

(b) e unknowns x and y which appear in the equation of a curve were considered to be line 
segments rather than numbers. It was not until a century or more later that coordinates 
began to be viewed as numbers. e notion of a one–one correspondence between points 
in a plane and ordered pairs of real numbers, nowadays the basis of our formulation of 
analytic geometry, was foreign to Fermat and Descartes.

(c) Descartes considered only curves whose equations are “algebraic” (that is, polynomials in 
x and y). Transcendental curves, such as y = log x, y = sin x, and y = ex, did not come un-
der the scope of his general method. Fermat, as we noted, conned himself essentially to 
polynomial equations of degree two in x and y. (In another work, Fermat also considered 
the so-called higher parabolas and hyperbolas, y = xn and y = x−n, respectively.)

(d) Curve-sketching in the sense familiar to us was not a central aspect of the analytic geom-
etry of Fermat and Descartes. Fermat emphasized the study of equations in x and y not 
via their graphical representation but via their properties as derived by the methods of 
calculus. Descartes (we recall) did not regard the equation of a curve as an adequate de-

nition of the curve.
(e) Both Descartes and Fermat used only positive coordinates, and such curves as were 

sketched appeared only in the rst quadrant. Negative numbers were not a commonly 
acceptable part of the number system. Moreover, since Descartes’ objective, and to a large 
extent Fermat’s, was to solve geometric problems, the need for negative coordinates did 
not arise.

At rst the geometry of Descartes and Fermat was accessible only to a very small circle of the 
ablest mathematicians. e latter did not take kindly and quickly to the idea of algebra, con-
ceived as a collection of formulas and rules of manipulation, playing the dominant role in the 
rigorous, axiomatic, venerable eld of geometry. It is only with Gaspard Monge and Lacroix in 
the latter part of the eighteenth century that we nd analytic geometry essentially as it appears 
in today’s textbooks. In the intervening years, analytic geometry was developed by, among oth-
ers, Leibniz, who introduced transcendental curves into the study of geometry; Newton, who 
used negative coordinates freely, sketched curves from their equations, and introduced various 
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David Hilbert, arguably the greatest mathematician of the rst half of the twentieth century, 
voiced memorably the fascination and challenge of the mathematical innite [11, p. vii]:

 » The innite! No other question has ever moved so profoundly the spirit of man; no other 

idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of 

clarication than that of the innite.

9.1 The Greeks

e challenges loomed early in the history of Greek mathematics. Consider the attempt by 
Democritus to calculate the volume of a cone by regarding it as composed of thin slices  parallel 
to its base. If the number of slices is nite, and the thickness of each slice is nonzero, then the 
surface of the cone will appear “stepped”, not smooth—which implies that the true volume is 
somehow a sum of innitely many zeroes (see for example [3], pp. 79–81). e four famous 
paradoxes of Zeno (ca 450 BC), which probably aimed to support the claim of his teacher 
Parmenides that motion is impossible, are no less perplexing. In the “Dichotomy”, for example, 
Zeno argues that to move from point A to point B, one must rst get halfway to B, then halfway 
to the remaining distance, and so on. Assuming that space, and in particular the line segment 
AB, is innitely divisible, it follows that one must cover innitely many steps in nite time. But, 
Zeno claims, this is clearly impossible—so motion is impossible.

Among the ancient Greek thinkers it was Aristotle who considered the innite most deep-
ly. He concluded that any geometrical magnitude, such as a line segment, is innitely divis-
ible, for (he said) the idea of a minimum magnitude makes no sense. Similarly, the set of 
numbers—which for Aristotle included only the natural numbers 1, 2, 3, …—can clearly be 
extended as far as we please. Time has both of these properties: it extends without limit, and 
any portion of it can be divided without limit. ese Aristotelian views were shaped by con-
siderations outside mathematics, for example the great philosopher’s belief that time can have 
neither a beginning nor an end.

But Aristotle went further, to a fundamental distinction of great importance. He held, for 
example, that although we can push the set of natural numbers arbitrarily far, we cannot grasp 
their totality as a single entity. is dierence between the “potential” innite and the “actual” 
innite appears also in geometry, where, Aristotle urged, a straight line cannot be innite but a 
mathematician can extend it as far as he/she needs or pleases. is avoidance of “actual” inni-
ties undoubtedly reects the close tie of Greek thought to the physical world—where of course 
we do not experience the innite. See [1].
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 coordinate systems, among them the polar; and Euler, who developed three-dimensional ana-
lytic geometry (already hinted at by Descartes and Fermat), and who did much to systematize 
the subject in his outstanding book of 1748, Introductio in Analysin Innitorum.

3.5 The Signicance of Analytic Geometry

Descartes’ and Fermat’s founding of the subject was revolutionary, although initially it might 
not have been viewed as such. Several decades aer its creation, the new subject/method laid 
the mathematical groundwork for calculus and Newtonian physics. More specically:
(a) Fermat and Descartes were the rst to highlight the very important notion of a (continu-

ous) variable—indispensable in the development of calculus.
(b) e use of equations to dene curves opened up the possibility of introducing an unlim-

ited number of new curves, beyond the conception of the synthetic method. Such curves, 
in turn, called for the invention of algorithmic techniques for their systematic investiga-
tion—an important factor in the creation of calculus.

(c) Undoubtedly the study of the physical world calls for geometric knowledge: objects in 
space are geometric gures, paths of moving bodies are curves. Analytic geometry made 
possible the expression of shapes and paths in algebraic form, from which quantitative 
knowledge can be derived.

Analytic geometry produced a most important coupling of algebra and geometry—a rela-
tionship that proved very fruitful for subsequent developments in mathematics. Lagrange 
 expressed it as follows [11, p. 322]:

 »As long as algebra and geometry travelled separate paths, their advance was slow and their 

application limited. But when these two sciences joined company, they drew from each 

other fresh vitality and thenceforward marched at a rapid pace toward perfection.

e mathematician Keith Kendig (1938–) echoed these remarks [10, p. 161]:

Leonhard Euler (–)  
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 » [Analytic geometry] gave our imagination ‘two ends’—an algebraic one and a geometric 

one; geometric insight could often be translated into an algebraic one, and vice versa.

Morris Hirsch (1933–), another prominent mathematician, was more specic [8, p. 604]:

 » If geometry lets us see what we are thinking about, algebra enables us to talk precisely 

about what we see, and above all to calculate. Moreover, it tends to organize our calcula-

tions and to conceptualize them; this, in turn, can lead to further geometrical construction 

and algebraic calculation.

Linear algebra is another excellent example of the interplay of algebra and geometry. For 
instance, the algebraic formulation of dimension makes natural the extension to dimensions 
higher than three. On the other hand, speaking about “lines” and “planes” in dimensions higher 
than three makes the subject more intuitive, suggestive, and comprehensible.

Analytic geometry—a bridge between algebra and geometry—also provides bridges be-
tween shape and quantity, number and form, the analytic and the synthetic, the discrete and 
the continuous. For, as was shown in the nineteenth century, the real numbers can be built up 
rigorously from the integers, and since the one–one correspondence between the real numbers 
and the points on a line is at the root of analytic geometry, this establishes a bridge between the 
continuous and the discrete. is correspondence—this tension—has been most fruitful in the 
development of mathematics. Hermann Weyl, one of the foremost mathematicians of the rst 
half of the twentieth century, noted that it “represents a remarkable link between something 
which is given by our spatial intuition and something that is constructed in a purely logico-
conceptual way” [5, p. 159].

In the twentieth century such bridge-building became enormously important, oering pow-
erful tools to mathematicians. As examples, consider the following disciplines, which by merg-
ing two elds lent strength to each: analytic number theory, dierential topology, geometric 
number theory, algebraic topology, algebraic number theory, dierential geometry, and algebra-
ic geometry. A grand synthesis—the Langlands Program—relating several areas of mathematics, 
in particular number theory, algebra, and analysis, was proposed by Robert Langlands (1936–) in 
the 1960s in a series of deep and far-reaching conjectures, some by now established [6].

Problems and Projects 
1. Discuss the thesis, advocated by some historians, that the Greeks invented analytic geom-

etry. Consult [2, 3, 9, 11].
2. What is the origin of the words “ellipse”, “hyperbola”, and “parabola”? See [2, 3, 9, 11].
3. How did Descartes solve the four-line locus problem of Pappus? See [2, 7, 9].
4. Discuss the coordinate systems (such as they were) of Descartes and Fermat. See [2, 3, 4, 

9, 11, 12].
5. Descartes’ geometry contains much on the theory of equations, especially in the third of 

the book’s three chapters. Describe it. See [2, 7, 9, 11].
6. Write a brief biography of either Descartes or Fermat.
7. Describe the principles, as outlined in Descartes’ major work in philosophy, Discourse on 

Method, which were based on his general method of acquiring knowledge. See [2, 3, 7, 9].
8. Discuss some contributions to analytic geometry of the successors of Fermat and Des-

cartes. See [2, 3, 9, 11].
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2. (i) Dene the product of quaternions, represented as quadruples a + bi + cj + dk, and show 
that every nonzero quaternion has an inverse.

 (ii) Show that K (the octonions) are not associative.
3. (i) Students with some background in abstract algebra may nd it interesting to show that 

the only n-tuples of reals that form associative division algebras are the real numbers, the 
complex numbers, and the quaternions (see [3, 6]).

 (ii) ere is an “elementary” proof which shows that, for odd n, a division algebra of n-
tuples of reals is possible only for n = 1 (see [3, p. 190]).

4. (i) ere is an important product dened on triples of reals, namely the vector product: 
(a1i + a2j + a3k) × (b1i + b2j + b3k) = (a2b3 − a3b2)i + (a3b1−a1b3)j + (a1b2 − a2b1)k. Show that the 
vector product (×), the quaternion product (*), and the scalar (inner) product (·) of 3-di-
mensional vectors are related: α  ×   β = α * β + α · β [2, 6]. e only other Euclidean n-space 
in which a “cross product” can be dened is the space with n = 7 [7].

 (ii) e historian of mathematics Michael Crowe argues that the quaternions were in-
strumental in the creation of vector analysis. Vector analysts and quaternionists were at 
loggerheads during the second half of the nineteenth century about the preferable way to 
deal with problems in physics. Write an essay discussing this issue (see [2, 6]).

5. Dening “integral quaternions” and using ideas from number theory (unique factor-
ization), one can prove Lagrange’s theorem that every positive integer is a sum of four 
squares (of integers). Outline the ideas involved in such a proof (see [3, 5]).

6. Write a brief account of the life and work of Hamilton (see [2, 3, 4]).
7. e quaternions and the octonions are (hypercomplex) “numbers” – and of course the 

integers, rationals, reals, and complex numbers are numbers. Are the polynomials (over 
the reals, say) numbers? e integers modulo m? What might (some of) these “numbers” 
have in common? What is a “number”, anyway? Research this topic.

References

. Cooke, R.: Classical Algebra: Its Nature, Origins, and Uses. Wiley, Hoboken ()

. Crowe, M.J.: A History of Vector Analysis. University of Notre Dame Press, Notre Dame ()

. Ebbinghaus, H.-D.: Numbers. Springer-Verlag, New York ()

. Hankins, T.L.: Sir William Rowan Hamilton. The Johns Hopkins University Press, Baltimore ()

. Herstein, I.N.: Topics in Algebra. Blaisdell Publishing Co., New York ()

. Kantor, I.L., Solodovnikov, A.S.: Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer-

Verlag, New York () (Translated from the Russian by A. Shenitzer.)

. Massey, W.: Cross products of vectors in higher dimensional euclidean spaces. Am. Math. Mon. 90, – 

()

. Niven, I.: Equations in quaternions. Am. Math. Mon. 48, – ()

. Niven, I.: The roots of a quaternion. Am. Math. Mon. 49, – ()

10.  Poincaré, H.: Poincaré’s review o Hilbert’s oundations o geometry. Bull. Am. Math. Soc. 37, – () 

(Reprinted)

11.  van der Waerden B.L.: Hamilton’s discovery o quaternions. Math. Mag. 49, – ()

. Wussing, H.: The Genesis of the Abstract Group Concept. MIT Press, Cambridge () (Translated from the 

German by A. Shenitzer.)

8



253
References

References

. Bell, E.T.: The Development of Mathematics, nd edn. McGraw-Hill, New York ()

2. Bos, H.J.M.: Redening Geometrical Exactness: Descartes’ Transormation o the Early Modern Concept o 

Construction. Springer, New York ()

. Boyer, C.B.: History of Analytic Geometry. Scripta Mathematica, New York ()

. Eves, H.: Great Moments in Mathematics (Before ). Mathematical Association of America, Washington 

DC ()

. Gardiner, A.: Innite Processes: Background to Analysis. Springer-Verlag, Berlin ()

. Gelbart, S.: An elementary introduction to the Langlands Program. Bull. Am. Math. Soc. 10, – ()

. Grabiner, J.: Descartes and problem solving. Math. Mag. 68, – ()

. Hirsch, M.: Review of Linear Algebra Through Geometry, by T. Bancho and J. Wermer. Am. Math. Mon. 92, 

– ()

. Katz, V.: A History of Mathematics: An Introduction, rd edn. Addison-Wesley, Boston ()

. Kendig, K.M.: Algebra, geometry, and algebraic geometry. Am. Math. Mon. 90, – ()

. Kline, M.: Mathematical Thought from Ancient to Modern Times. Oxford University Press, Oxford ()

. Mahoney, M.: The Mathematical Career of Pierre de Fermat, nd edn. Princeton University Press, Princeton 

()

Further Reading

. Descartes, R.: The Geometry of René Descartes, with a Facsimile of the First Edition. Dover, New York ()

. Scott, J.F.: The Scientic Work of René Descartes (–). Taylor & Francis, New York ()

718
8.4 •  Beyond the Quaternions

It is tempting to continue in this manner and dene an algebra of 16-tuples in the hope that 
it will turn out to be a division algebra; but any such attempt is doomed to failure. We have the 
following sequence of four theorems which address these issues; the rst two were proved in 
the late nineteenth century and the other two in the twentieth (see [3, 6]).
i. e only n-tuples of reals that form associative and commutative division algebras are 

R and C (that is, those n-tuples for which n = 1 or 2), where R and C denote the real and 
complex numbers, respectively.

ii. e only n-tuples of reals that form associative (but not necessarily commutative) divi-
sion algebras are R, C, and H (that is, n = 1, 2, 4).

iii. e only n-tuples of reals that form alternative (but not necessarily associative or commu-
tative) division algebras are R, C, H, and K (that is, n = 1, 2, 4, 8).

iv. e only n-tuples of reals that form division algebras (not necessarily alternative, associa-
tive, or commutative) are those for which n = 1, 2, 4, 8. (Such algebras need not be any of 
R, C, H, or K, but their dimensions must be one of 1, 2, 4, or 8.) e proof of this result uses 
topology.

Other important “algebras” (number systems) were dened in the decades following the in-
troduction of the quaternions—for example, exterior algebras (Hermann Grassmann), group 
algebras (Cayley), matrices (Cayley), triple algebras (Augustus De Morgan), and biquaternions 
(Cliord). In time, and motivated by some of these examples, the general concept of a “hyper-
complex number system”—an associative algebra—emerged, and became one of the pillars of a 
newly established eld—“abstract algebra” (see [3, 6]).

Problems and Projects

1. e Fundamental eorem of Algebra says that every polynomial with complex coe-
cients has a complex root. An analogous result holds with “complex” replaced by “quater-
nion”. Note however that a polynomial of degree n over the quaternions need not have n 
quaternion roots. For example, x2 + 1 = 0 has innitely many roots: bi + (1–b2)1/2j, where b is 
a real number with 0 ≤ b ≤ 1. Write a report on the issue of roots of polynomial equations 
with quaternion coecients (see [3, 8, 9]).

Arthur Cayley (–)  
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4.1 The Pascal–Fermat Correspondence

Probability, like various other mathematical concepts and theories, emerged from the desire 
to solve real-world problems—in this case, to provide a mathematical framework for games of 
chance and for gambling. One must of course distinguish between “probability” as a concept 
and “probability” as a subject. We have occasionally used “probability theory” for the latter 
term. Normally “probability” is used for both concept and theory, the context making clear 
which is intended.

Gambling is a long-standing activity, going back over three thousand years and engaged in 
by all civilizations. But the mathematical analysis of gambling, leading to the advent of prob-
ability, is of relatively recent origin. It began with Blaise Pascal and Pierre de Fermat. Around 
1653 Pascal was approached by Antoine Gombauld, Chevalier de Méré (1607–1684)—a man of 
letters with a considerable knowledge of mathematics—to help him solve two gaming prob-
lems. Many writers say the request was made to improve de Méré’s gambling chances [3, p. 84]; 
Oysten Ore disputes that claim [14].

e two problems came to be known as the “Dice Problem” and the “Division Problem”, the 
latter also known as the “Problem of Points”.

e Dice Problem: How many throws of two dice are needed in order to have a better-than-
even chance of getting two sixes?

e Division Problem: What is a fair distribution of stakes in a game interrupted before its 
conclusion?

e Dice Problem is much the simpler of the two. It was solved in the mid-sixteenth century 
by Girolamo Cardano, among others, using plausibility arguments. Cardano, called “e Gam-
bling Scholar” by Ore [13], was a colorful gure. A physician and mathematician by profession, 
he was also a practicing astrologer and an inveterate gambler, who composed “a learned book 
on games and ways to win in gambling” [13, p. viii], entitled e Book on Games of Chance [13]. 
His most inuential work, e Great Art, dealing with the solution of the cubic and quartic 
equations by radicals, was a fundamental contribution to mathematics (see 7 Chapter ).

e Division Problem presents a much greater challenge. Among the rst to introduce it 
was the Italian mathematician Luca Pacioli, in his 1494 book Everything About Arithmetic, Ge-

ometry, and Proportions, better known as Suma. Here is his version of the problem [10, p. 489]:

 » Two players are playing a fair game [the players are equally capable] that was to continue un-

til one player had won six rounds. The game stops when the rst player has won ve rounds 

and the second player three. How should the stakes be divided between the two players?

 Chapter 8 • Hypercomplex Numbers: From Algebra to Algebras

both events were radical departures from existing conceptions, and both led to fundamental 
developments in their respective elds.

8.4 Beyond the Quaternions

Like all revolutions, this one was not universally acclaimed. For example, John Graves, Ham-
ilton’s mathematician friend, said of the quaternions: “I have not yet any clear views as to the 
extent to which we are at liberty arbitrarily to create imaginaries [referring presumably to the 
i, j, k], and to endow them with supernatural properties” [2, p. 34 ]. But most mathematicians, 
including Graves, quickly came around to Hamilton’s point of view. His quaternions served as 
a catalyst for the exploration of diverse “number systems” with properties which diered in 
various ways from those of the real and complex numbers.

First and foremost among such systems were the “octonions” or “Cayley numbers”, dis-
covered independently by Graves and by Arthur Cayley very soon aer the discovery of the 
quaternions. ese are 8-tuples of reals, containing the quaternions, which form a division 
algebra K. It is instructive to view K in the following manner:

Note rst that the quaternions can be viewed as pairs of complex numbers: a + bi + cj + dk 
= (a + bi) + (c + di)j = w + zj, where w, z є C, j2 = − 1. Now dene multiplication of these pairs: 
(w1 + z1j) (w2 + z2j) = (w1w2—z2*z1) + (z1w2* + z2w1)j, where z* denotes the conjugate of z. (It is 
important to have the wi and zi above in precisely this order.) Verify that the product thus de-
ned is the same as the usual product of quaternions given in terms of i, j, and k. ese pairs of 
complex numbers are therefore the elements of H.

Let now K = {α + βe: α, β є H}, where e is an arbitrary unit with e2 = − 1. Dene a product in 
K as follows: (α1 + β1e)(α2 + β2e) = (α1α2 − β2*β1) + (β1α2* + β2α1)e (see the denition above of the 
product in H; the conjugate α* of the quaternion α = a + bi + cj + dk is a − bi − cj − dk). ese are 
the “octonions”. ey can be viewed of course as 8-tuples of reals. Since K contains H, it is clearly 
noncommutative. But it is also nonassociative, that is, there are a, b, c in K for which a(bc) ≠ (ab)
c; for example, (ij)e ≠ i(je). K, however, is “alternative”, that is, (xy)y = x(yy) and y(yx) = (yy)x for 
all x, y in K (see [6]).

William Rowan Hamilton (–) 
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Pacioli claimed that the stakes should be split in the ratio of 5:3, which is incorrect. Unsuc-
cessful attempts to solve the problem were also made by several Italian mathematicians of the 
sixteenth century, including Cardano and Niccolò Tartaglia. Tartaglia ventured that the stakes 
should be divided in the ratio 2:1.

And so we come to Pascal and the Chevalier de Méré. Pascal was intrigued by the Prob-
lem of Points proposed by de Méré and agreed to study it. Before long he had a solution. e 
problem was challenging and subtle, and so he wrote (in July 1654) to Fermat, the leading 
mathematician of France, asking if he would read his (Pascal’s) solution. Fermat obliged. us 
began the now famous Pascal–Fermat correspondence, lasting several months (July–Novem-
ber 1654), and resulting in the emergence of what turned out to be a most important math-
ematical discipline—probability. Seven letters of that correspondence are extant, though it is 
not known how many were exchanged; in particular, Pascal’s initial letter to Fermat is lost. e 
renowned mathematician and master probabilist Alfréd Rényi reconstructed four of Pascal’s 
letters to Fermat [15].

What did the letters in the Pascal–Fermat correspondence contain? First, what they did 
not contain: there are no formal denitions, nor proofs  of theorems; even the word “prob-
ability” does not appear (it will rst show up about a century later). What we have are solutions 
of a problem—the Division Problem (the Problem of Points), its specializations and exten-
sions (for example, to three players), dierent ways of looking at it, give-and-take between 
two brilliant mathematicians, the emergence of approaches to the solution of the problem, 
some combinatorics, and crucial ideas such as a fair die, equally likely events, and “favorable” 
events—although these last two important ideas are already present in the solutions of gaming 
problems by Cardano and by Galileo. e thrust of the Pascal–Fermat correspondence was that 
it put in motion what came to be known as “probability theory”—a newbranch of mathematics. 
Indeed, contemporary mathematicians recognized that Fermat and Pascal had done precisely 
that.

Why was there no denition of probability, and why were there no theorems and proofs in 
the Pascal–Fermat correspondence—a work that initiated a new subject? First, such matters 
are not to be expected in a correspondence dealing with the solution of problems. Beyond that, 
it is almost always the case that the formal development of a subject comes at the end of an 
evolutionary process. Calculus is an excellent example of this phenomenon (see 7 Chapter ). 

 Blaise Pascal (–)  
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8.3 The Quaternions

Having dened the complex numbers as ordered pairs of reals, it was natural for Hamilton to 
inquire whether an algebra of triples exists to represent vectors in 3-space. Since the complex 
numbers were fundamental in many branches of mathematics and its applications, he consid-
ered the search for such an algebra of triples, which he had begun to pursue already in 1828, to 
be of vital importance.

Addition and subtraction of triples were to be dened componentwise in the obvious way. 
As for multiplication, Hamilton imposed several conditions it would have to satisfy: it had to 
be associative, commutative, and distributive (over addition); division had to be possible; the 
“law of the moduli” had to hold (the modulus of the product equals the product of the moduli, 
where the modulus of the triple (a, b, c) is a2 + b2 + c2); and, nally, the product of triples had to 
have geometric signicance, just as the product of vectors in the plane does [2].

Hamilton tried for een years to dene a multiplication on triples which would satisfy the 
conditions stated above; for a blow-by-blow account of his struggles, see [11]. As we know, he 
did not succeed, and turned instead to quadruples (a, b, c, d) of reals, which he also denoted, 
as an aid to computation, by a + bi+ cj + dk. ese did indeed satisfy all the requirements he 
demanded of triples, except for commutativity under multiplication. Addition and subtrac-
tion were dened componentwise, the associative and distributive laws for quadruples were 
assumed, and the symbols i, j, and k were to satisfy the relations i2 = j2 = k2 = ijk = −1—these 
relations turned out to be necessary if multiplication was to “work” as Hamilton required [11]. 
Using the associative and distributive laws, the product of i, j, and k can be extended to all 
quadruples a + bi + cj + dk.

Hamilton called these objects “quaternions”. We denote them by H. ey form a “skew 
eld”—that is, they satisfy all the axioms of a eld except for commutativity of multiplication. 
In fact, they form a “division algebra”—a skew eld that is also a vector space (over the reals, in 
this case). From the above identities follow the identities ij = k = −ji, jk = i = − kj, and ki = j = − ik. 
In particular, ij ≠ ji, so that, indeed, the quaternions do not commute.

It is interesting to observe that had Hamilton suspected that triples a + bi + cj would not 
work (that is, would not yield a skew eld extending the complex numbers), he could easily 
have proved that, and saved himself een years of labor! Here is a proof: suppose that such a 
multiplication of triples is possible. Let ij = a + bi + cj, for some real numbers a, b, and c. en 
i(ij) = i(a + bi + cj). Multiplying and collecting terms yields c2 + 1 = 0—a contradiction.e 
benets of hindsight!

In 1843 Hamilton presented his work on quaternions to the Royal Irish Academy. For the 
next twenty-two years, he was preoccupied almost exclusively with their application, mainly to 
geometry and physics. To him they were the long-sought key which would unlock the mysteries 
of these subjects. “I still must assert”, he noted in 1851, “that this discovery appears to me to be 
as important for the middle of the nineteenth century as the discovery of uxions [calculus]  
was for the close of the seventeenth” [2, p. 30].

But from a more modern perspective the importance of the quaternions lies in algebra. 
eir invention (discovery?) was a breakthrough in that subject’s evolution. It detached the 
laws of algebra from those of arithmetic, the laws which the real and complex numbers obey. 
Now there was a “number system” which satised all the laws of arithmetic save for commuta-
tivity of multiplication. Henri Poincaréreferred to this development as “a revolution in arith-
metic quite comparable to that which Lobachevsky eected in geometry” [10, p. 78]. Indeed, 
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Probability theory followed a similar route. Mathematicians knew very well what “probability” 
meant without having to dene the concept, and they put the ideas of probability theory to 
excellent use in the eighteenth and nineteenth centuries without having a formal structure of 
the subject, which was introduced in the early twentieth century.

4.2 Huygens: The First Book on Probability

Christiaan Huygens was a rst-rate Dutch mathematician, physicist, astronomer, and inventor. 
(Most mathematicians in the seventeenth and eighteenth centuries were also scientists.) He 
studied mathematics and law at the University of Leiden. On a visit to Paris in 1655 he became 
acquainted with the Problem of Points, though not with its solution. Taken with the problem, 
he promptly solved it. But he realized that one was dealing here with important ideas beyond 
the solution of problems. So he decided to write a book which would give expression to this 
broader point of view [9, p. 65]:

 » I would like to believe that if someone studies these things a little more closely, then he will 

almost certainly come to the conclusion that it is not just a game which has been treated 

here, but that the principles and the foundations are laid of a very nice and very deep 

speculation.

e result of these speculations was a sixteen-page treatise titled On Reckoning at Games of 

Chance, published in 1657. Here is how a historian of the subject, Florence Nightingale David 
(1909–1993), saw this work [3, p. 110] (but see [5, p. 138 .] for a contrary view):

 Pierre de Fermat (–) 
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at about the same time by William Rowan Hamilton, was whether one can enlarge the number 
system beyond the complex numbers [4]. Both problems were among a select few that gave rise 
in the late decades of the nineteenth century and the early decades of the twentieth century to 
what has come to be known as “abstract algebra” [1]. We will consider in this chapter the second 
question: are there numbers beyond the complex numbers? To provide a context we must rst 
discuss Hamilton’s work on complex numbers.

8.2 Hamilton and Complex Numbers

e complex numbers were conceived by the Renaissance mathematician Rafael Bombelli 
and expounded in his book Algebra of 1572. e motivation for their introduction was the 
desire to solve polynomial equations, in particular the cubic. It took another two and a half 
centuries, and the imprimatur of Gauss, who in 1831 gave their geometric representation as 
points (or vectors) in the plane, to have them accepted as bona de mathematical entities. 
Similar geometric representations of complex numbers were given by Caspar Wessel in 1797 
and by Jean Robert Argand in 1806, among others, but their work went largely unnoticed 
(see 7 Chapter ).

Hamilton was the greatest Irish mathematician. He was a precocious child, who at the age 
of thirteen knew (besides English) thirteen languages: Greek, Latin, Hebrew, Syriac, Persian, 
Arabic, Sanskrit, Hindustani, Malay, French, Italian, Spanish, and German. Aside from lan-
guages, he studied geography, religion, literature, astronomy, and mathematics. He read Euclid 
in Greek, Newton in Latin, and Laplace in French. At seventeen he found an error in the latter’s 
renowned Mécanique Céleste.

Hamilton made outstanding contributions in optics, dynamics, and algebra. His interest 
in algebra was aroused around 1826 by his mathematician friend John Graves. Hamilton was 
dissatised with the geometric representation of complex numbers given by Gauss and others. 
Aer all, he observed, these are numbers, which he believed to be the domain of algebra. He 
objected in particular to the dependence of a geometric representation of complex numbers 
on a coordinate system. He was also unhappy with their representation as expressions of the 
form a + bi (which Gauss, among others, had used). It seemed to him that adding bi to a was 
like adding oranges to apples. And what in any case is i, he asked?

ese misgivings prompted Hamilton to dene (in 1837) complex numbers as ordered 
pairs of reals. He dened, in the way that we still do, the four algebraic operations on pairs, 
and showed that under these operations the ordered number-couples come close to satisfy-
ing the laws of what we now call a eld: they obey the closure laws and the commutative and 
distributive laws (he introduced the associative law a decade later in his work on quaternions); 
moreover, these pairs possess additive and multiplicative inverses, and they include a zero 
element.

is was a substantial conceptual advancement in algebra, given that in the mid-1820s the 
subject consisted largely of rules for the manipulation of algebraic expressions, especially those 
involving negative and complex numbers, and the solution of polynomial equations. Note, for 
example, that in Hamilton’s version of complex numbers the “mysterious” i is just the “ordi-
nary” pair (0, 1).

8
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 »The scientist who rst put forward in a systematic way the new propositions evoked by the 

problems sent to Pascal and Fermat, who gave the rules and who rst made denitive the 

idea of mathematical expectation, was Christianus Huygens.

Huygens’ book contained fourteen propositions, which were detailed solutions of problems 
dealing with games of chance. For example, two of the propositions were the Dice and Divi-
sion Problems, presented by de Méré to Pascal. e ninth proposition discusses the Problem 
of Points involving an arbitrary number of players, and the twelh proposition asks for the 
number of dice a player must use so that at least two sixes show up in a single throw.

e solutions of all the problems were carefully justied. e justications were based on 
the fundamental notion of mathematical “expectation” (expected gain)—which Huygens was 
the rst to dene and highlight—rather than on the concept of probability, which is not men-
tioned. (One can dene expectation in terms of probability or probability in terms of expecta-
tion [1, p. 165].) Huygens concluded his book with ve challenging problems, which came to 
be named aer him, and which enticed prominent mathematicians, including Jakob Bernoulli 
and Abraham De Moivre, to work on their solution. Here is the second problem [16, p. 25]:

 »Three players, A, B, C, take twelve balls, eight of which are black and four white. They play 

on the following conditions: they are to draw blindfold, and the rst who draws a white ball 

wins. A is to have the rst turn, B the next, C the next; then A again, and so on. Determine 

the chances of the players.

Bernoulli solved the problem under several interpretations—for example, drawing the balls 
with or without replacement. See [9, p. 75] for Huygens’ own solution of the division problem.

Huygens’ book served as a text in probability—the only one available for the next y years, 
when it was incorporated, with commentary, as Part I of Jakob Bernoulli’s Ars Conjectandi [2]. 
See the section below, as well as [3, 9] for details.

4.3 Jakob Bernoulli’s Ars Conjectandi (The Art of Conjecturing)

e Bernoullis, a distinguished Swiss family, produced eight members who made signicant 
contributions to mathematics. Most prominent among them were Jakob (1654–1705), his 
younger brother Johann (1667–1748), Johann’s son Daniel (1700–1782), and Jakob’s nephew 
Nikolaus (1687–1759). Jakob Bernoulli’s important and inuential book Ars Conjectandi, pub-
lished posthumously in 1713, may be said to have completed the rst period in the evolution of 
probability and given a thrust to the second [2]. e modern philosopher Ian Hacking gives 
details [8, p. 143]:

 »Jacques Bernoulli’s Ars conjectandi presents the most decisive conceptual innovations in 

the early history of probability. …[Upon its publication] probability came before the public 

with a brilliant portent of all the things we know about it now: its mathematical profundity, 

its unboundedpractical applications…and its constant invitation for philosophizing. Prob-

ability had fully emerged.

e Ars Conjectandi comprises four parts. e rst is a reprint of Huygens’ On Reckoning at 

Games of Chance, with extensions and elaborations of his solutions. (Bernoulli was greatly 

4

Chapter 4 • Probability: From Games o Chance to an Abstract Theory
678

Hypercomplex Numbers: From Algebra 

to Algebras
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8.1 Introduction

e term “algebra” dates back to the ninth century AD, but the subject, referring to the solution 
of polynomial equations, is roughly four thousand years old. It originated in about 1800 BC, 
with the Babylonians, who solved linear and quadratic equations much as we do today. ey 
had no symbolic notation, so their equations had numerical coecients, with their number 
system consisting of positive integers and rationals. eir solutions were prescriptive: do such 
and such and you will arrive at the answer. But the numerous repetitions of the same type of 
solution suggest that the procedure functioned as a standard algorithm.

e Greek Diophantus, the Indians, and the Chinese had various methods for solving linear 
and quadratic equations in the early centuries AD. e most inuential Islamic work was likely 
al-Khwārizmī’s Kitab al-jabr wa’l-muqabalah (e Book of Restoring and Balancing), of about 
825 AD, in which he gave a classication and systematic treatment of quadratic equations. 
But he too had no symbolic notation, and, unlike the Indians and the Chinese, he considered 
as coecientsor roots only positive integers or rationals. us he deemed equations suchas 
3x + 7 = 5, x2 = 2, and x2 + 1 = 0 to be unsolvable.

ree major challenges deriving from the history just cited were:
i. to enlarge the number system to allow for the solution of equations such as those above,
ii. to extend the study of polynomial equations beyond those of the second degree, and
iii. to introduce a symbolic notation in order to develop a general theory of polynomial equa-

tions.

To a large extent these tasks were accomplished by the early seventeenth century. Mathemati-
cians introduced symbolic notation in algebra; gradually began to use negative, real, andcom-
plex numbers, even if these were not rigorously dened; and succeeded in solving equations of 
degrees 3 and 4 “by radicals”—that is, they found a “formula” that expressed the roots of such 
equations in terms of rational operations (sums, dierences, products, and quotients) on their 
coecients and the extraction of roots, as in the quadratic formula (see 7 Chapter ). ese 
were giant strides in the creation of what came to be known as “classical algebra”. A crown-
ing achievement of that subject was the Fundamental eorem of Algebra (proved by Carl 
Friedrich Gauss in 1801), which in one of its versions says that every polynomial with complex 
coecients has a complex root.

e Fundamental eorem of Algebra asserts only the existence of roots, and so does not 
address the problem of solving polynomial equations—in particular, of solving them by radi-

cals. is last challenge was met in the 1830s by Evariste Galois, an achievement which led to 
the introduction of groups (see 7 Chapter  and [12]). Another prominent question, dealt with 



31 4
4. •  Jakob Bernoulli’s Ars Conjectandi (The Art of Conjecturing)

inuenced by Huygens’ book.) ere are also solutions of the ve problems which Huygens le 
as exercises. Part II contains a systematic account of “the doctrine of permutations and combi-
nations”, as Bernoulli called it, including what came to be known as the Bernoulli numbers [5]; 
and Part III applies the previous work to solve a series of games more challenging than those 
considered in Huygens’ treatise. It was in Part IV, however, that Bernoulli made a fundamental 
advance in the subject by stating and proving a “Law of Large Numbers”—the rst limit theo-
rem of probability theory. He called it the “Golden eorem” and considered the result a greater 
accomplishment than if he had shown how to square a circle. In the twentieth century, when 
stronger versions of Bernoulli’s theorem had been proved, his result came to be known as the 
“Weak Law of Large Numbers”.

Roughly, Bernoulli’s Law of Large Numbers enables us to determine experimentally the 
probability of an event whose a priori probability is not known. For example, if there is an un-

known number of black and white pebbles in an urn, the probability of drawing a white pebble 
from the urn can only be determined experimentally—by sampling. us, if in n identical trials 
an event occurs m times, and if n is very large, then m/n should be near the actual—a priori—
probability of the event, and should get closer and closer to that probability as n gets larger 
and larger. See [9] for a precise mathematical statement of Bernoulli’s Law of Large Numbers.

Bernoulli saw as the most important aspect of his book the application of his Law of Large 
Numbers to practical problems in civil, moral, and economic contexts. Eventually he ran out 
of time (it took him about twenty years to compose the Ars Conjectandi), and the task was le 
to his successors; but with his work probability began to make inroads into statistics, a process 
which greatly intensied over the next two centuries and more, resulting in an inseparable 
marriage of the two disciplines, which has become indispensable in many walks of life. We 
mentioned earlier that Bernoulli was the rst to dene and use the concept of probability. Here 
is his denition [2, p. 89]:

 » Probability … is degree of certainty, and diers from the latter as a part diers from the 

whole…. One thing … is called more probable … than another if it has a larger part of 

certainty, even though in ordinary speech a thing is called probable only if its probability 

notably exceed one-half of certainty. I say notably, for what equals approximately half of 

certainty is called doubtful or undecided.

is is not very enlightening as a working denition, as it leaves unanswered the question 
of how to compute probabilities. Nevertheless, “Bernoulli’s Ars Conjectandi … deserves to be 

 Jakob Bernoulli (–) 

 
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 considered the founding document of mathematical probability”, contends—not unjustly—
Edith Dudley Sylla, who translated the book, with annotations, from Latin into English [2, p. vii].

4.4 De Moivre’s The Doctrine of Chances

Another work on probability theory in the eighteenth century was De Moivre’s e Doctrine of 

Chances—an outstanding text of the period. It began with a denition of probability [10, p. 646]:

 »The Probability of an Event is greater, or less, according to the number of Chances by which 

it may either happen or fail.

De Moivre did very signicant work in “pure” mathematics, but he was unable to obtain a 
university position, so he turned his eorts to the study of probability and life insurance. But he

 »was rather old when he began his research in mathematics; and not until the age of  did 

he begin his work on probability theory. Nevertheless, he succeeded in becoming the lead-

ing probabilist from  until his death, and he found one of his most important results, the 

normal approximation to the binomial distribution, in , at the age of  [, p. ].

4.5 Laplace’s Théorie Analytique des Probabilités

is is a seminal work on probability by one of the great mathematicians and scientists, Pierre 
Simon, Marquis de Laplace. It “summarized the results of the classical probability theory [that 
related to games of chance] and gave a decisive thrust to its further development” [15, p. 69].

Laplace believed that the theory of probability should be brought to bear on the social 
sciences, just as analysis has been brought to bear on the physical sciences. In support of 
this thesis he applied probability to decision theory, to the credibility of witnesses, and to 
insurance.

e 635-page éorie Analytique des Probabilités, though deep and comprehensive, was 
a forbidding work, not easily accessible to the nonspecialist. So Laplace wrote a considerably 
shorter, “reader-friendly” book of 153 pages, with hardly any mathematical symbols, entitled A 

Philosophical Essay on Probabilities [12]. is deals essentially with the same subject matter as 
the éorie. Its aim was to “present without the aid of analysis [that is, without the mathemati-
cal machinery] the principles and general results of this theory [probability], applying them 
to the most important questions of life, which are indeed for the most part only problems of 
probability” [12, p. 1].e following is Laplace’s denition of probability [12, p. 6]:

 »The theory of chance [“chance” and “probability” were used interchangeably] consists in 

reducing all the events of the same kind to a certain number of cases equally possible, that 

is to say, to such as we may be equally undecided about in regard to their existence, and in 

determining the number of cases favorable to the event whose probability is sought. The 

ratio of this number to that of all the cases possible is the measure of this probability, which 

is thus simply a fraction whose numerator is the number of favorable cases and whose 

dominator is the number of all the cases possible.
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We stand in awe and admire.

Problems and Projects

1. Prove that Euclid’s h postulate P5 is equivalent—in the presence of his other four pos-
tulates—to Playfair’s axiom, namely that through a point not on a given line there exists 
only one line parallel to the given line.

2. Outline Saccheri’s approach to the proof of P5.See [5, 9, 15].
3. Show how Legendre “deduced” P5 from Euclid’s other four postulates and indicate where 

Legendre went wrong. See [7, 15].
4. Examine Gauss’ contribution to noneuclidean geometry, including the reasons why he 

did not publish in this area; describe his attitude towards Janos Bolyai. See [6–9].
5. Describe briey what elliptic (noneuclidean) geometry is about. See [5–8, 10, 11, 15].
6. Describe the Klein model for noneuclidean (hyperbolic) geometry, and explain how it 

shows that hyperbolic geometry is consistent. See [8].
7. Discuss briey Riemannian geometry and its relation to Einstein’s theory of relativity. 

See [6–10].
8. Write a brief account of the life and some of the work of one of Bolyai, Lobachevski, 

Gauss, or Riemann. See [6, 7, 9, 10].
9. Explain what impact the creation of noneuclidean geometry had on the relationship of 

geometry to the physical world. See [6, 7, 9, 10, 15].
10. e invention of noneuclidean geometry had a substantial impact on the philosophy of 

Immanuel Kant. Explain. See [6–8, 10, 13, 15].
11. What was found decient in Euclid’s formulation of geometry and how was it set right? 

See [8, 15].
12. Find two results in mathematics which were introduced without any thought of being 

 applied, yet which subsequently turned out to have important uses.

 Eugene Wigner (–)  
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is denition was acceptable in the nineteenth century but is not satisfactory from a modern 
perspective; in particular, it does not accommodate innite probability spaces.

4.6 Philosophy of Probability

We note that the several denitions of probability which we have given are rather wordy and 
seem less than satisfactory. In fact, as the historian Anders Hald asserts, “the concept of prob-
ability is an ambiguous one. It has gradually changed content, and at present it has many mean-
ings [for example, objective and subjective probability; but see the next section], in particular 
in the philosophical literature” [9, p. 28].

So what is the nature of probability? Where did it come from? How do we describe/dene 
it? ese are largely philosophical questions, and they have been of concern mainly to philoso-
phers. at is not surprising, since of course probability is closely connected to ideas such as 
causality and determinism. (Laplace too, in his Philosophical Essay, reects on philosophical 
issues; see for example his Chapter  IV, titled “Concerning Hope” [12].) Moreover, to make 
sense of the immense development of probability and its applications in the twentieth century, 
philosophers have introduced a number of “theories” of the subject, among them the classi-
cal theory, the logical theory, the subjective theory, the frequency theory, and the propensity 
theory [7].

4.7 Probability as an Axiomatic Theory

A number of outstanding mathematicians, among them Poisson, Gauss, Chebyshev, Markov, 
Bertrand, and Poincaré, made fundamental contributions to probability in the nineteenth cen-
tury. Moreover, the subject had signicant applications in the physical and social sciences. 
But it lacked foundations and was considered, according to Rényi, “a problematic discipline 
between mathematics and physics or philosophy” [15, p. 71]. Only in the early twentieth century 
did it begin to gain acceptance as a respectable branch of pure mathematics.

 Pierre Simon, marquis de Laplace 

(–)
 

 

(f) Why is mathematics useful?

For two thousand years, mathematics and the physical world were closely connected, the for-
mer serving as a model for aspects of the latter. is intimate relationship was fractured in the 
nineteenth century by the discovery of noneuclidean geometry. In particular, mathematical 
space and physical space became two distinct entities, with no evident connection between 
them.

Yet a tight linkage between mathematics and the physical world does exist. Mathematics 
abounds with examples of results and theories which were introduced without any thought of 
application yet which subsequently—a decade, a century, or a millennium later—turned out to 
be extremely useful. For example, matrices were introduced by Cayley in the 1850s simply as 
a useful algebraic notation, yet decades later they turned out to have numerous weighty uses. 
Another example: conic sections were introduced in ancient Greece to solve problems in pure 
mathematics but were used two thousand years later by Kepler in astronomy and by Galileo in 
mechanics. For a third example we cite Albert Einstein, who needed a Riemannian (noneuclid-
ean) geometry, introduced in the 1850s, to formulate his theory of general relativity (in 1916).

How do we explain that “tight linkage” between mathematics and the physical world? e 
philosopher and mathematician Alfred North Whitehead found it paradoxical [9, p. 466]:

 » The paradox is now fully established that the utmost abstractions are the true weapons 

with which to control our thought of concrete fact.

e Nobel Prize winner Eugene Wigner spoke famously of “the unreasonable eectiveness of 
mathematics in the natural sciences” [14, pp. 2, 7, 14]:

 » The enormous usefulness of mathematics in the natural sciences is something bordering on 

the mysterious and there is no rational explanation for it. …The miracle of the appropriate-

ness of the language of mathematics for the formulation of the laws of physics is a wonder-

ful gift which we neither understand nor deserve. …[It is] quite comparable in its striking 

nature to the miracle that the human mind can string a thousand arguments together 

without getting itself into contradictions or to the two miracles of the existence of laws of 

nature and o the human mind’s capacity to divine them.

 Bernhard Riemann (–) 
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Abstraction and axiomatization were hallmarks of mathematics in the rst half of the twen-
tieth century (see 7 Chapter ), so an axiomatic treatment of a branch of the subject seemed the 
proper approach to its study. David Hilbert was arguably the moving gure in inspiring and 
urging this view. In his celebrated 1900 address on Mathematical Problems, in which he singled 
out those that he thought should get the attention of research mathematicians of the twentieth 
century, the sixth problem asked for the axiomatization of probability (and of mechanics).

at task was accomplished in 1933 by the prominent Russian mathematician Andrey 
Nikolaevich Kolmogorov, with essential help from the recently created Lebesgue theory of 
measure and integration. For example, the expectation in this development of probability is a 
Lebesgue integral [15, p. 70].

e following are Kolmogorov’s axioms for probability; they apply only to nite probability 
spaces [11, p. 2]:

Let E be a set whose elements we call “elementary events”, and let F be a set of subsets of E, 
whose elements we call “random events”. Let P be a function from F to R*, the set of all nonnega-
tive real numbers. For each A ϵ F, wecall P(A) the “probability” of the event A.

F is said to be a “eld of probability” if the following axioms hold:
1. F is closed under the union, intersection, and dierence of sets
2. E ∈ F
3. P(E) = 1
4. If A, B∈F such that A ∩ B = Ø, then P(A U B) = P(A) + P(B)

ese then are theaxiomatic foundations of niteprobability theory. Kolmogorov extended 
this theory to innite-dimensional probability spaces. In an 80-page booklet based on these 
axioms he discussed fundamental ideas of the subject, among them conditional probability, 
Bayes’ theorem, random variables, mathematical expectation, independence, and the law of 
large numbers [11].

4.8 Conclusion

e creation of probability has been a “great moment” in mathematics [6]. Howard Eves (1911–
2004) put it well [6, p. 9]:

 »It is fascinating, and at the same time somewhat astonishing, to contemplate that math-

ematicians have been able to develop a science, namely the mathematical theory of prob-

ability, that establishes rational laws that can be applied to situations of pure chance [our 

emphases].

We shall give the last word to Laplace [12, pp. 195–196]:

 »It is remarkable that a science which commenced with the consideration of games of 

chance should be elevated to the rank of the most important subjects of human knowl-

edge. …there is no science more worthy of our meditations, and no more useful one could 

be incorporated in the system of public instruction.
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(c) Axioms as self-evident truths

ere is little doubt that euclidean geometry was conceived by its creators as an idealization of 

physical space, its postulates suggested by, and abstracted from, physical experience. Euclid’s 

postulates were thus deemed self-evident. With the creation of noneuclidean geometry, this 

view of the postulates could no longer be upheld. For if a postulate is self-evidently true, its 

negation would be false. What then are we to make of the contradictory h postulates of eu-

clidean and hyperbolic geometry, each an integral “truth” in its respective geometry?

If euclidean and noneuclidean geometry are to coexist as mathematical systems, we must 

abandon the view of axioms as self-evident truths. Axiomsare neither self-evident nor true. 

If Euclid’s parallel postulate (say) was self-evident, how could its negation be a postulate in an 

equally consistent geometry? Moreover, if that postulate was true, then its negation would be 

false, and this would invalidate the consistency of noneuclidean geometry.

What then are axioms, if not self-evident truths? ey are the starting assumptions of a 

mathematical theory—the “building blocks” of the theory. How to choose them so as to yield 

a useful theory is another matter.

(d) What is geometry?

It is important to realize that our mathematical conception of geometry must be divorced from 

its possible applicability to the physical world. And the notion that geometry represents truths 

about physical space must be abandoned. What then is geometry? It is a collection of various “ge-

ometries”—euclidean, hyperbolic, elliptic, projective, dierential, algebraic, inversive, and so on. 

Each of these is a mathematical theory in its own right, based on its own set of assumptions (axi-

oms) from which logical consequences (theorems) are deduced (proved). (An entirely dierent 

approach to geometry, via groups, was taken by Felix Klein in his Erlanger Program of 1872 [9].)

(e) Relative truth

A geometry is a set of logical consequences (theorems) of arbitrary (but consistent) assump-

tions (axioms) about meaningless entities (primitive terms), which we may designate as 

“points”, “lines”, and other “geometrical entities” (see 7 Chapter 1). Since the primitive terms 

are not invested with meaning, neither are the axioms nor the theorems. So the theorems can-

not be (absolutely) true. However, theyare said to be relatively true—that is, true relative to the 

axioms of which they are consequences. Similar considerations apply to other mathematical 

structures dened by axioms. Here are two examples:

i. What is the sum of the angles of a triangle? e question as it stands is meaningless. It 

calls for another question: Is it a triangle in euclidean geometry?—in which case the sum 

of the angles of the triangle is 180°; or is it a noneuclidean triangle?—a hyperbolic trian-

gle, whose angle sum is less than 180° or an elliptic triangle, with angle sum greater than 

180°. So the answer depends on the context.

ii. Does the equation x2 + 1 = 0 have any solutions, and if yes, how many? Again, the answer 

depends on the context: Over the reals the equation has no solutions, over the complex 

numbers it has two solutions, i and − i, and over the quaternions it has innitely many—

in fact, uncountably many—solutions; thus, bib +− () 1
2

 j is a solution of x2 + 1 = 0 for 

every real number b satisfying −1 ≤ b ≤ 1 [12].

e issue of absolute versus relative truth is perhaps less important to the mathematician than 

to the philosopher. To the latter, mathematics provided, for two millennia, our sole example of 

absolute, indisputable, truth—until the 1830s, when that illusion was lost! See [3, 9].
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Problems and Projects

1. Discuss the life and work of a mathematician encountered in this chapter who especially 
appealed to you.

2. Discuss Pascal’s “Wager” concerning the existence of God. See [3, 4, 8, 9].
3. Discuss two or three paradoxes of probability theory.
4. Write a brief essay on John Graunt and his Mortality Tables. See [4, 9].
5. Write an essay on Pascal’s Treatise on the Arithmetical Triangle. See [5, 6, 9].
6. Discuss some of Cardano’s work in probability. See [8, 13, 14].
7. Give a numerical example of the Division Problem and explain how you would solve it. 

See [1, 4, 5, 9, 10].
8. Discuss aspects of the philosophy of probability. See [8, 9, 17].
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geometry. Riemann dened a new type of noneuclidean geometry, called “elliptic geometry”, 
in which there are no parallel lines and the sum of the angles of a triangle is greater than 180°. 
In fact, he introduced an innite number of noneuclidean geometries, of arbitrary dimension, 
now known as “Riemannian”. One of the many ideas in his remarkable paper was the use of 
dierential methods in noneuclidean geometry. Somewhat later, Arthur Cayley and Felix Klein 
obtained euclidean and noneuclidean geometry (both hyperbolic and elliptic) as subgeom-
etries of projective geometry. us did noneuclidean geometry acquire rmer foundations and 
enter the mainstream of mathematics. Geometry owered in the nineteenth century! See [7].

7.5 Some Implications of the Creation of Noneuclidean Geometry

We consider a number of major issues arising from the discovery of noneuclidean geometry. At 
the Second International Congress of Mathematicians in Paris in 1900, in a talk on Mathemati-
cal Problems, David Hilbert referred to that breakthrough as one of the two “most suggestive 
and notable achievements of the [nineteenth] century” in the eld he called “the principles of 
analysis and geometry” (the other being “the arithmetical formulation of the concept of the 
continuum”) [16, p. 395].

(a) Consistency

We have described two noneuclidean geometries, hyperbolic and elliptic, which were devel-
oped on the basis of sets of axioms diering in some respects from those of euclidean geometry. 
But are we at liberty to propose an arbitrary set of axioms and proceed to create a discipline 
whose content is the set of logical consequences of those axioms? Yes, but only if the chosen 
axioms are consistent—that is, do not lead to a contradiction.

e creators of noneuclidean geometry felt condent about the consistency of their axi-
oms, having derived a large body of theorems without arriving at a contradiction and having 
noted that past generations had failed to prove Euclid’s P5. But convincing as such evidence 
was, it did not (of course) constitute a formal proof of consistency of the given geometry. To 
prove consistency, mathematicians devised the notion of a “model” of a geometry [8]. By con-
structing a euclidean model of noneuclidean geometry, they showed the relative consistency 
of noneuclidean geometry—namely, that this geometry is consistent if euclidean geometry is. 
Subsequently it was shown that euclidean geometry is consistent if noneuclidean geometry 
is. is established the relative consistency of one geometry with respect to the other. See [8].

(b) Euclid is nally vindicated

e consistency of hyperbolic geometry at last settled the two thousand-year-old question con-
cerning a proof of Euclid’s h postulate. It showed the impossibility of deducing the postulate 
from the remaining four postulates. For if that deduction were possible, P5 would be a theo-
rem also in hyperbolic geometry, since the rst four postulates of euclidean geometry are also 
postulates of hyperbolic geometry. But then the h postulates of hyperbolic and euclidean 
geometry would both be results in hyperbolic geometry, which would yield the inconsistency 
of that geometry. Moreover, the (relative) consistency of euclidean geometry showed that the 
negation of P5 cannot be proved from the other four. is established that Euclid’s P5 is, as we 
now say, independent of his other four postulates [15].

7

Chapter 7 • Noneuclidean Geometry: From One Geometry to Many



375

Calculus: From Tangents and Areas to 

Derivatives and Integrals

H. Grant, I. Kleiner, Turning Points in the History of Mathematics, Compact Textbooks in 

 Mathematics, DOI ./----_, © Springer Science+Business Media, LLC 

5.1 Introduction

e invention of calculus is one of the great intellectual and technical achievements of civi-
lization. Calculus has served for three centuries as the principal quantitative tool for the in-
vestigation of scientic problems. It has given mathematical expression to such fundamental 
concepts as velocity, acceleration, and continuity, and to aspects of the innitely large and 
innitely small—notions that have formed the basis for much mathematical and philosophical 
speculation since ancient times. Modern physics andtechnology would be impossible without 
calculus. e most important equations of mechanics, astronomy, and the physical sciences in 
general are dierential and integral equations—outgrowths of the calculus of the seventeenth 
century. Other major branches of mathematics derived from calculus are real analysis, complex 
analysis, and calculus of variations. Calculus is also fundamental in probability, topology, Lie 
group theory, and aspects of algebra, geometry, and number theory. In fact, mathematics as we 
know it today would be inconceivable without the ideas of calculus.

Isaac Newton and Gottfried Wilhelm Leibniz independently invented calculus during the 
last third of the seventeenth century. But their work was neither the beginning of the story nor 
its end. Practically all of the prominent mathematicians of Europe around 1650 could solve 
many of the problems in which elementary calculus is now used—but providing their proce-
dures with rigorous foundations required two more centuries.

e innitely small and the innitely large—in one form or another—are essential in cal-
culus. In fact, they are among the features which most distinguish that branch of mathematics 
from others. ey have appeared throughout the history of calculus in various guises: innitesi-
mals, indivisibles, dierentials, “evanescent” quantities, moments, innitely large and innitely 
small magnitudes, innite sums, and power series. Also they have been fundamental at both 
the technical and conceptual levels—as underlying tools of the subject and as its foundational 
underpinnings. We will give examples of these manifestations of the innite in the earlier evo-
lution of calculus (seventeenth and eighteenth centuries).

5.2 Seventeenth-Century Predecessors of Newton and Leibniz

e Renaissance (ca. 1400–1600) saw a owering and vigorous development of the visual arts, 
literature, music, the sciences, and—not least—mathematics. It witnessed the decisive triumph 
of positional decimal arithmetic,the introduction of algebraic symbolism, the solution by 
radicals of the cubic and quartic, the free use if not full understanding of irrational numbers, 
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us the two thousand-year search for a proof of Euclid’s h postulate gave birth, around 
1830, to a new geometry—noneuclidean. It was a momentous achievement. According to Don-
ald Coxeter (1907–2003), the great twentieth-century geometer,

 »The eect of the discovery of hyperbolic geometry on our ideas of truth and reality has 

been so profound that we can hardly imagine how shocking the possibility of a geometry 

dierent rom Euclid’s must have seemed in 1820. [, p. xxv]

is intellectual revolution suered the kind of pains attendant on all such upheavals. A gen-
eration passed before its acceptance by the mathematical community. Gauss’ death in 1855 
saw the publication of his diaries containing his thoughts on noneuclidean geometry, and his 
authority helped legitimize interest in the subject. Yet for the rst forty years or so of its history, 
noneuclidean geometry still lacked wide acceptance. It had not been shown to be consistent, 
and it had not been related to other branches of mathematics or to physical phenomena. 

e turning point came in 1868 with the publication of two papers, respectively by Eugenio 
Beltrami and Bernhard Riemann. Beltrami’s paper established the consistency of hyperbolic 

 Janos Bolyai (–)  

 Nikolai Ivanovich Lobachevsky (–)  
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the introduction of complex numbers, the rebirth of trigonometry, the establishment of a re-

lationship between mathematics and the arts through perspective drawing, and a revolution 

in astronomy, later to prove of great signicance for mathematics. A number of these devel-

opments were necessary prerequisites for the rise of calculus, as was the invention of analytic 

geometry by René Descartes and by Pierre de Fermat in the early decades of the seventeenth 

century (see 7 Chapter 3).

e Renaissance also saw the full recovery and serious study of the mathematical works of 

the Greeks, especially Archimedes’ masterpieces. His calculations of areas, volumes, and cen-

ters of gravity were an inspiration to many mathematicians of that period. Some went beyond 

Archimedes in attempting systematic calculations of the centers of gravity of solids. But they 

used the classical “method of exhaustion” of the Greeks, which was conducive neither to the 

discovery of results nor to the development of algorithms. e temper of the times was such 

that most mathematicians were far more interested in results than in proofs; rigor, declared 

Bonaventura Cavalieri in the 1630s, “is the concern of philosophy and not of geometry [math-

ematics]” [10, p. 383]. To obtain results, mathematicians devised new methods for the solution 

of calculus-type problems. ese were based on geometric, algebraic, and arithmetic ideas, 

oen in interplay. We give two examples.

 kCavalieri

A major tool for the investigation of calculus problems was the notion of an indivisible. is 

idea—in the form, for example, of an area as composed of a sum of innitely many parallel 

lines, regarded as atomistic—was embodied in Greek physical theory and was also part of 

medieval scientic thought. Mathematicians of the seventeenth century fashioned indivisibles 

into a powerful tool for the investigation of area and volume problems.

Indivisibles were used in calculus by Galileo and others in the early seventeenth century, 

but it was Cavalieri who, in his inuential Geometry of Indivisibles of 1635, shaped a vague 

concept into a useful technique for the determination of areas and volumes. His strategy was 

to consider a geometric gure to be composed of an innite number of indivisibles of lower 

dimension. us a surface consists of an innite number of equally spaced parallel lines, and a 

solid of an innite number of equally spaced parallel planes. e procedure for nding the area 

(or volume) of a gure is to compare it to a second gure of equal height (or width), whose 

area (or volume) is known, by setting up a one-to-one correspondence between the indivisible 

elements of the two gures and using “Cavalieri’s Principle”: if the corresponding indivisible 

elements are always in a given ratio, then the areas (or volumes) of the two gures are in the 

same ratio. For example, it is easy to show that the ordinates of the ellipse x2/a2 + y2/b2 = 1 are to 

the corresponding ordinates of the circle x2 + y2 = a2 in the ratio b:a (see . Figure 5.1), hence the 

area of the ellipse = (b/a) × the area of the circle = πab.

 kFermat

Fermat was the rst to tackle systematically the problem of tangents. In the 1630s he devised 

a method for nding tangents to any polynomial curve. e following example illustrates his 

approach.

Suppose we wish to nd the tangent to the parabola y = x2 at some point (x, x2) on it. Let 

x + e be a point on the x-axis and let s denote the “subtangent” to the curve at the point (x, x2) 

(see . Figure 5.2). Similarity of triangles yields x2/s = k/(s + e). Fermat notes that k is “adequal” 

to (x + e)2, presumably meaning “as nearly equal as possible”, although he does not say so. 

 Writing this as k ≅ (x + e)2, we get x2/s ≅ (x + e)2/(s + e). Solving for s we have s ≅ ex2/[(x + e)2 

5
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of a new—“noneuclidean”—geometry. Saccheri was on the verge of its discovery, but he would 
not—could not—accept his own results, because they contradicted propositions in euclidean 
geometry. is attitude was a barrier whose overcoming would require not a mathematical 
but a psychological breakthrough; and this Saccheri could not achieve. Perhaps, as Wolfgang 
Bolyai (the father of one of the inventors of noneuclidean geometry) claimed, “mathematical 
discoveries, like springtime violets in the woods, have their season which no human can hasten 
or retard” [2, p. 263].

7.4 The Discovery (Invention) of Noneuclidean Geometry

In 1763 a German student, G. S. Klügel, submitted a Ph.D. dissertation that found aws in 28 
dierent supposed proofs of the parallel postulate, and in 1766 Johann Lambert made further 
interesting discoveries along the lines of Saccheri. But the problem of the parallel postulate, 
still unresolved, was not at the centre of attention of eighteenth-century mathematics; the 
major concerns at the time were in analysis. It is only towards the beginning of the nineteenth 
century that we witness a revival of interest in geometry. In this context, Ferdinand Schweikart 
developed “astral geometry” in 1807 and Franz Taurinus a “logarithmic-spherical geometry” in 
1826—both notable forerunners of noneuclidean geometry. Nevertheless, the following lament 
from Wolfgang Bolyai in the 1820s suggests that the dilemma posed by the parallel postulate 
still seemed far from resolved [11, p. 31]:

 » It is unbelievable that this stubborn darkness, this eternal eclipse, this aw in geometry, this 

eternal cloud on virgin truth can be endured.

e German Carl Friedrich Gauss, the Hungarian Janos Bolyai, and the Russian Nikolai 
Lobachevsky are considered the independent inventors of noneuclidean geometry, although 
Gauss did not publish his researches in this eld. ese three mathematicians were the rst 
to develop—consciously and systematically—a new geometry, which they regarded as logi-
cally consistent, and whose theorems included many of the “strange” results arrived at in past 
generations. Its point of departure was the acceptance of Euclid’s rst four postulates but the 
replacement of the h by an opposed “parallel” postulate, namely that through a point not on a 
given line there is more than one line parallel to the given line. e body of theorems derived as 
logical consequences of these postulates came to be known as “noneuclidean geometry” (later 
as “hyperbolic geometry”). Here are some of those theorems:
1. e sum of the angles of a triangle is less than 180°. It follows, in particular, that rect-

angles do not exist in this geometry.
2. e sum of the angles of a triangle varies with the area of the triangle—the larger the area, 

the smaller the angle sum.
3. Similar triangles are necessarily congruent.
4. Two distinct lines cannot be equidistant.
5. A line may intersect one of two parallel lines without intersecting the other.
6. e ratio of the circumference to the diameter of a circle is larger than π. Moreover, the 

ratio increases as the area of the circle increases.

7
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− x2] = ex2/e(2x + e) = x2/(2x + e). It follows that x2/s ≅ 2x + e. Note that x2/s is the slope of the 
tangent to the parabola at (x, x2). Fermat now “deletes” the e and claims that the slope of the 
tangent is 2x.

Fermat’s method was severely criticized by some of his contemporaries, notably Descartes. 
ey objected to his introduction and subsequent suppression of the “mysterious e”. Dividing 
by e meant regarding it as not zero—but discarding e implied that it was zero. is is inadmis-
sible, they rightly claimed. But Fermat’s mysterious e embodied a crucial idea: the giving of 
a “small” increment to a variable. And it cried out for the limit concept, which was formally 
introduced only about two hundred years later. Fermat, however, considered his method to be 
purely algebraic.

e above examples give us a glimpse of the near-century of vigorous investigations in cal-
culus prior to the work of Newton and Leibniz. Mathematicians plunged boldly into almost vir-
gin territory—the mathematical innite—where a more critical age might have feared to tread. 
ey produced a multitude of powerful, if nonrigorous, innitesimal techniques for the solu-
tion of area, volume, and tangent problems. What, then, was le for Leibniz and Newton to do?

Bonaventura Cavalieri (–)  
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a2
y2y2
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+
. Figure 5.1 Area of an ellipse 
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logically equivalent—that is, in the presence of the other four postulates, this statement and P5 
imply each other. And of course one must not use an equivalent of P5 to prove P5!

Similar attempts to prove P5 were made over the next fourteen centuries. All failed for 
essentially the same reason as Proclus’, namely the dependence of the proof on an assump-
tion—implicit or explicit—which seemed obvious but which was subsequently shown to be 
equivalent to P5. Below are some examples of such equivalents (with the names and dates of 
their originators, where known).
a. Two parallel lines are equidistant (Posidonius, rst century BC).
b. If a line intersects one of two parallel lines, it alsointersects the other (Proclus, h 

 century AD).
c. ere exists a rectangle (Nasir-Eddin, thirteenth century).
d. Given a triangle, we can construct a similar triangle of any size (John Wallis, seventeenth 

 century).
e. rough a point not on a given line, there exists only one parallel to the given line (John 

Playfair, eighteenth century).
f. ree noncollinear points always lie on a circle (Legendre, end of eighteenth century).
g. Two lines parallel to a third line are parallel to each other.
h. e locus of all points equidistant from a straight line is a straight line.

We should point out that because of statement (e), Euclid’s h postulate is oen referred to as 
the “parallel postulate”.

Girolamo Saccheri, a Jesuit priest, made an important departure from the line of reasoning 
of his predecessors in his attempt to prove P5. In 1733 he wrote a book entitled Euclid Vindicated 

of Every Flaw, in which he assumed the negation of P5 and tried to arrive at a contradiction. 
Saccheri deduced a number of “strange” results, among them that the sum of the angles of a 
triangle is less than 180°, and that a line can approach another line asymptotically. He claimed 
that the latter result was “repugnant to the nature of the straight line” [8, p. 218]. He therefore 
concluded—erroneously—that Euclid’s P5 must hold, namely, that it is a theorem derivable 
from his other four postulates.

Such results might indeed have appeared strange to anyone exposed exclusively to euclid-
ean geometry, but they were not logically contradictory. In fact, they were to form the elements 
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. Figure 7. Proclus’ proo o the 5th postulate  
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5.3 Newton and Leibniz: The Inventors of Calculus

In the rst two thirds of the seventeenth century mathematicians solved calculus-type prob-
lems, but they lacked a general framework in which to place them. is was provided by New-
ton and Leibniz. Specically, they
a. invented the general concepts of derivative and integral—though not in the form we see 

them today. For example, it is one thing to compute areas of curvilinear gures and vol-
umes of solids using ad hoc methods, but quite another to recognize that such problems 
can be subsumed under a single concept, namely the integral.

b. recognized dierentiation and integration as inverse operations. Although several math-
ematicians before Newton and Leibniz noted the relation between tangent and area prob-
lems, mainly in specic cases, the clear and explicit recognition, in its complete generality, 
of what we now call the Fundamental eorem of Calculus belongs to Newton and Leibniz.

c. devised a notation and developed algorithms to make calculus a powerful computational 
instrument.

d. extended the range of applicability of the methods of calculus. While in the past those 
methods were applied mainly to polynomials, oen only of low degree, they were now 
applicable to “all” functions, algebraic and transcendental.

And now to some examples of the calculus as developed by Newton and by Leibniz. We should 
note that theirs is a calculus of variables—which Newton calls “uents”—and equations relating 
these variables; it is not a calculus of functions. e notion of function as an explicit mathemati-
cal concept arose only in the early eighteenth century.

 kNewton

Newton considered a curve to be “the locus of the intersection of two moving lines, one vertical 
and the other horizontal. e x and y coordinates of the moving points are then functions of the 
time t, specifying the locations of the vertical and horizontal lines respectively” [4, p. 193]. New-
ton’s basic concept is that of a “uxion”, denoted by x; it is the instantaneous rate of change (in-
stantaneous velocity) of the uent x—in our notation, dx dt/ . e instantaneous velocity is not 
dened, but is taken as intuitively understood. Newton aims rather to show how to compute x.

y = x2

k

x x + e

s e

x2

{ {

. Figure 5. Finding the 

tangent to a parabola
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be “an  epoch-making statement” [15, p. 17]—was apparently singled out for special attention 
from earliest times: it took considerably longer to state than the other four, and was not nearly 
so self-evident. Euclid himself may have felt uneasy about this postulate, for his rst use of it 
comes aer he deduced twenty-eight propositions from only the other four [1, 4].

is h postulate would play a large role in subsequent history, and so it appears oen in 
the story that we tell below; for variety and brevity we shall sometimes refer to it as “P5”.

Proclus, a Greek philosopher and mathematician whose works are among our main  sources 
of information on Greek geometry, stated the dilemma thus in his Commentary on Euclid’s 

Elements [8, p. 210]:

 » This [P] ought even to be struck out of the Postulates altogether; for it is a statement in-

volving many diculties…. The statement that since the two lines converge more and more 

as they are produced will eventually meet is plausible but not necessary.

To substantiate the last statement, Proclus gave the example of a hyperbola and its asymptotes, 
and he consequently proposed the following [8, p 210]:

 » It is then clear from this that we must seek a proof of the present theorem, and that it is 

alien to the special character of postulates.

7.3 Attempts to Prove the Fifth Postulate

Proclus himself oered such a proof:
Let L3 be a line intersecting the lines L1 and L2 such that α + β < 180°; we want to prove that 

L1 and L2 intersect (see . Figure .). Since α + β < 180°, draw a line L4 through P (the point of 
intersection of L2 and L3) such that α` + β = 180°. It follows that L4 and L2 are parallel. (is is 
Proposition 28 of Euclid’s  Elements; it is proved without the use of the h postulate P5.) Now 
Proclus argued that since L1 intersects L4 (namely at P), it must also intersect L2, basing himself 
on the allegedly obvious fact that if a line intersects one of two parallel lines it must intersect 
the other. us L1 and L2 intersect, which completes the proof of P5.

e problem with this proof is that while the statement “if a line intersects one of two 
parallel lines it must intersect the other” may be more self-evident than P5, the two are in fact 

L3

L1

L2

ᵦ

. Figure 7.1  Euclid’s 5th postulate (P5) 
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e following is an example of Newton’s computation of the tangent to a curve with equa-
tion x3 − ax2 + axy  − y3 = 0 at an arbitrary point (x, y) on the curve. He lets ο be an innitesimal 
period of time. en xο and yο are innitesimal increments in x and y, respectively. (For, we 
have distance = velocity × time = xο or yο, assuming with Newton that the instantaneous 
 velocities x and y of the point (x, y) moving along the curve remain constant throughout the 
innitely small time interval ο.) Newton calls xο and yο moments, a “moment” of a uent be-
ing the amount by which it increases in an innitesimal time period. An innitesimal was not 
formally dened, but was understood to be an “innitely small” quantity, less than any nite 
quantity but not zero. us, (x + xο, y + yο) is a point on the curve innitesimally close to (x, y). 
In Newton’s words: “Soe yt if ye described lines [coordinates] bee x and y, in one moment, they 
will bee x + xο and y + yο in ye next” [4, p. 193]. Substituting (x + xο, y + yο) into the original 
equation and simplifying by deleting x3 − ax2 + axy − y3 (which equals zero) and dividing by ο, 
we get:

Newton now discards the terms involving ο, noting that they are “innitely lesse” than the 
remaining terms. is yields an equation relating x and y, namely

From this relationship we can get the slope of the tangent to the given curve at any point (x, y):

is procedure is quite general, Newton notes, and it enables him to obtain the slope of the 
tangent to any algebraic curve.

e problem of what to make of the “ο’s”—the “ghosts of departed quantities” [4, p. 294]—
remained, according to Bishop George Berkeley, who launched a famous critique. Are they 
zero? Finite quantities? Innitely small? Newton’s dilemma was not unlike Fermat’s a half-
century earlier.
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7.1 Introduction

For over two millennia there was only one geometry—the one we now call “euclidean”. Since it 
was believed to consist of truths abstracted from the physical world, it was taken to be the only 
possible geometry. But there was a perceived blemish: one of this geometry’s postulates was not 
as self-evident as the others. So mathematicians tried to derive it as a proposition (theorem) 
from the remaining postulates. Such attempts were made over many centuries, by, among oth-
ers, John Wallis and Adrien-Marie Legendre—but to no avail. Early in the nineteenth century 
two young, little-known mathematicians, the Hungarian Janos Bolyai and the Russian Nikolai 
Lobachevsky, dared the establishment by proposing (independently) a new geometry, dier-
ent from Euclid’s yet mathematically just as valid—a “noneuclidean” geometry, based on the 
replacement of Euclid’s troublesome postulate by an alternative. e discovery of that geometry 
had a deep impact on mathematics, on science, and on philosophy.

7.2 Euclidean Geometry

Our story begins with Euclid, ca. 300 BC. His singular achievement was to bring under the roof 
of the axiomatic method (see 7 Chapter ) the fundamentals of geometry as they had developed 
over the previous three centuries. e resulting grandopus, titled Elements, became an ideal of 
exposition in mathematics, and in other subjects, for more than two millennia. It contains over 
400 propositions, logically deduced from only ve postulates. e postulates are:
1. A straight line may be drawn between any two points.
2. A straight line segment may be produced indenitely.
3. A circle may be drawn with any given point as centre and any given radius.
4. All right angles are equal.
5. If a straight line intersects two other straight lines lying in a plane, and if the sum of the 

interior angles thus obtained on one side of the intersecting line is less than two right 
angles, then the straight lines will eventually meet, if extended suciently, on the side on 
which the sum of the angles is less than two right angles.

In terms of the diagram below (. Figure .), postulate 5 states that if L3 cuts L1 and L2 such that 
α + β  180°, then L1 and L2, if produced, will intersect to the right of L3.

ese postulates were viewed by the Greeks as “self-evident truths”, since they were deemed 
to be idealizations of physical space, and therefore they were assumed to require no proof. 
But Euclid’s h postulate—which the mathematician Cassius Keyser (1862–1947) judged to 
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 kLeibniz

Leibniz’ ideas on calculus evolved gradually, and like Newton, he wrote several versions, giv-

ing expression to his ripening thoughts. Central to all of them is the concept of “dierential”, 

although that notion had dierent meanings for him at dierent times.

Leibniz viewed a “curve” as a polygon with innitely many sides, each of innitesimal 

length. (Recall that the Greeks conceived a circle in just that way.) With such a curve is as-

sociated an innite (discrete) sequence of abscissas x1, x2, x3, …, and an innite sequence of 

ordinates y1, y2, y3, …, where (xi, yi) are the coordinates of the points of the curve.

e dierence between two successive values of x is called the “dierential” of x and is 

denoted by dx; similarly for dy. e dierential dx is a xed nonzero quantity, innitely small 

in comparison with x—in eect, an innitesimal. ere is a sequence of dierentials  associated 

with the curve, namely the sequence of dierences xi − xi−1 associated with the abscissas x1, x2, 

x3, … of the curve [4, pp. 258, 261].

e sides of the polygon constituting the curve are denoted by ds—again, there are in-

nitely many such innitesimal ds’s. is gives rise to Leibniz’ famous “characteristic triangle” 

with innitesimal sides dx, dy, ds satisfying the relation (ds)2 = (dx)2 + (dy)2 (see . Figure 5.3). 

e side ds of the curve (polygon) is taken as coincident with the tangent to the curve (at the 

point x). Leibniz put it thus [9, pp. 234–235]:

 » We have only to keep in mind that to nd a tangent means to draw a line that connects two 

points of the curve at an innitely small distance, or the continued side of a polygon with 

an innite number of angles, which for us takes the place of the curve. This innitely small 

distance can always be expressed by a known dierential like ds. 

e slope of the tangent to the curve at the point (x, y) is thus dy/dx—an actual quotient of dif-

ferentials, which Leibniz calls the “dierential quotient” (. Figure 5.3). 

Here are two further examples of his calculus. To discover and “prove” the product rule for 

dierentials, he proceeds as follows:

d  d  d d d d d d dxy x x y y xy xy x y y x x y xy x y y x( ) = +( ) +( ) − = + + + ( )( ) − = + .  He omits 

(dx)(dy), noting that it is “innitely small in comparison with the rest” [4, p. 255].

As a second example, Leibniz nds the tangent at a point (x, y) to the conic x2 + 2xy = 5: 

Replacing x and y by x + dx and y + dy, respectively, and noting that (x + dx, y + dy) is a point on 

the conic “innitely close” to (x, y), we get

( ) ( )( ) .x x x x y y x xy+ + + + = = + d 2  d  d 5 22 2

x

y

ds
dy

dx

y = f (x)

. Figure 5.3 Leibniz’ characteristic triangle  
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3. Write brief essays on the lives and work of two of Fermat, Euler, Gauss, Dedekind.
4. Show that Z a b a b Z

−
= + − ∈5 5{ : , } is not a UFD. See [1, 16].

5. Determine all gaussian primes. See [1, 3, 17].
6. Write a brief essay on Diophantus, addressing both his algebraic and number-theoretic 

work, and discussing his inuence. See [2, 6, 10].
7. Discuss Lagrange’s solution of the Pell equation, x2 − dy2 = 1, d a positive integer, noting his 

use of “foreign objects” in number theory. See [1, 3, 5, 15].
8. Write an essay on Bachet, Frenicle, and Mersenne, the scientists who were Fermat’s cor-

respondents.
9. Write an essay on the factorization of ideals in rings of integers of quadratic elds. See 

[1, 4, 5, 11, 13].
10. Discuss the law of quadratic reciprocity, and the law of biquadratic reciprocity. See 

[1, 7, 17].
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5.4 •  The Eighteenth Century: Euler

Simplifying, and discarding (dx)(dy) and (dx)2, which are assumed to be negligible in compari-
son with dx and dy, yields2xdx + 2xdy + 2ydx = 0. Dividing by dxand solving for dy/dx gives 
dy/dx = (− x − y)/x. is is of course what we would get by writing x2 + 2xy = 5 as y = (5 − x2)/2x 
and dierentiating this functional relation. (Recall that Leibniz’ calculus predates the emer-
gence of the function concept.)

We see in these examples how Leibniz’ choice of a felicitous notation enabled him to ar-
rive very quickly at reasonable convictions, if not rigorous proofs, of important results. His 
symbolic notation served not only to prove results but also greatly facilitated their discovery.

5.4 The Eighteenth Century: Euler

Brilliant as the accomplishments of Newton and Leibniz were, their respective versions of 
calculus consisted largely of loosely connected methods and problems, and were not easily 
accessible to the mathematical public, such as that was. e rst systematic introduction to 
the Leibnizian dierential calculus was given in 1696 by Guillaume de L’Hospital in his text 
e Analysis of the Innitely Small, for the Understanding of Curved Lines. Calculus was further 
developed during the early decades of the eighteenth century, especially by the Bernoulli broth-
ers Jakob and Johann. Several books appeared during this period, but the subject lacked focus. 
e main contemporary concern of calculus was with the geometry of curves—tangents, areas, 
volumes, and lengths of arcs (cf. the title of L’Hospital’s text). Of course Newton and Leibniz 
introduced an algebraic apparatus, but its motivation and the problems to which it was applied 
were geometric or physical, having to do with curves. In particular, this was (as we already 
noted) a calculus of variables related by equations rather than a calculus of functions.

A fundamental conceptual breakthrough was achieved by Euler around the mid-eighteenth 
century. is was to make the concept of function the centerpiece of calculus. us calculus is 
not about curves, asserted Euler, but about functions. e derivative and the integral are not 
merely abstractions of the notions of tangent or instantaneous velocity on theone hand and of 
area or volume on the other—they are the basic concepts of calculus, to be investigated in their 
own right. But mathematicians of the eighteenth century did not readily embrace this centrality 
of functions, especially since variables seemed to serve them well.

Gottfried Wilhelm Leibniz (–) 
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6.6 •  Conclusion

Q(a)”. (For example, 153 + is an integer of Q(15), since it is a root of the monic polynomial 
x2 − 6x − 6.) In fact, Dedekind dened a ring—the rst such denition. e I(a) are integral 
domains, but they are not in general ufds.

e I(a) are vast generalizations of the domains of integers that were considered in this 
chapter: the gaussian integers, the cyclotomic integers, the quadratic integers, and of course the 
ordinary integers. ey are also, Dedekind determined, the appropriate domains in which to 
formulate andprove a UFT. is turned out to be the following: Every nonzero and noninvert-

ible ideal in I(a) is a unique product of prime ideals.
ese I(a) are examples of “dedekind domains”, which play an essential role in ( algebraic) 

number theory (cf. unique factorization domains, which play an essential role in “elementary” 
number theory).

6.6 Conclusion

To summarize the events that we have been describing: aer more than two thousand years in 
which number theory meant the study of properties of the (positive) integers, its scope became 
enormously enlarged. One could no longer use the term “integer” with impunity: it had to be 
qualied—a “rational” (ordinary) integer, a gaussian integer, a cyclotomic integer, a quadratic 
integer, or any one of an innite species of other (algebraic) integers—the various I(a). More-
over, powerful new algebraic tools were introduced and brought to bear on the study of these 
integers—elds, commutative rings, unique factorization domains, ideals, prime ideals, and 
Dedekind domains. A new subject—algebraic number theory—had emerged, vitally important 
to this day.

Problems and Projects

1. Supply the steps needed to make Euler’s solution of the Bachet equation x2 + 2 = y3 rigor-
ous. See [1, 3, 15, 16].

2. Solve x2 + y2 = z2 in integers (that is, nd all Pythagorean triples) using the ideas of this 
chapter, that is, factoring the le side of the equation and proceeding as in Euler’s solution 
of the Bachet equation. See [1, 17].

Richard Dedekind (–)  



 Chapter 5 • Calculus: From Tangents and Areas to Derivatives and Integrals

Power series played a fundamental role in the calculus of the seventeenth and eighteenth 
centuries, especially in Newton’s and Euler’s. ey were viewed as innite polynomials with 
little, if any, concern for convergence. e following is an example of Euler’s derivation of the 
power-series expansion of sinx, employing innitesimal tools with great artistry [4, p. 235]:

Use the binomial theorem to expand the le-hand side of the identity (cosz + isinz)n 
= cos(nz) + isin(nz), and equate the imaginary part to sin(nz). We then get:

 (.)

Now let n be an innitely large integer and z an innitely small number (Euler sees no need to 
explain what these are). en

(again no explanation from Euler, although of course we can surmise what he had in mind). 
Equation . now becomes

Let now nz = x. Euler claims that x is nite since n is innitely large and z innitely small. is 
nally yields the power-series expansion of the sine function:

is formal, algebraic style of analysis, used so brilliantly by Euler and practiced by most 
eighteenth-century mathematicians, is astonishing. It accepted as articles of faith that what is 
true for convergent series is true for divergent series, what is true for nite quantities is true 
for innitely large and innitely small quantities, and what is true for polynomials is true for 

sin cos sin 3 cos sin
1 3

nz n z z n n n z z
n n

( ) = ( ) ( )− −( ) −( )  ( ) ( )
− −

1 2 / !
33

5 51 2 3 4 5 cos+ −( ) −( ) −( ) −( )  ( ) −
−

n n n n n z sinz
n

/ ! ( ) .…

cos 1 sin 1 2 1 2 3 4
3 5

z z z n n n n n n n n n n= = ( )( ) = ( )( )( )( ) = …, , , .− − − − − −

sin 3 5
3 3 5 5

nz nz n z n z( ) = ( ) ( ) …− + −/ ! / ! .

3 5sinx x x / 3! x / 5!  . It takes one’s breath away!= − + −…

Leonhard Euler (–)  

5

 Chapter 6 • Gaussian Integers: From Arithmetic to Arithmetics

Kummer’s result was quite a feat, considering that during the previous two centuries FLT had 
been proved for only three primes. Further crucial progress would require  another century 
and more.

Kummer’s brilliant work went much beyond its application to FLT. Its main fo-
cus was the study of reciprocity laws (see earlier comments in this section). One of its 
major achievements was to “rescue” unique factorization (see above) in the domains 

2 p 1
p 0 1 2 p 1 iC {a a w a w a w : a Z}−

−= + + +…+ ∈  of cyclotomic integers. He did this by showing 
that every nonzero, noninvertible element of Cp is a unique product of “ideal primes”.

Kummer’s work le important questions unanswered:
(i) What is an “ideal prime” anyway? is central concept in his work was le vague. 
(ii) Can his complicated theory of factorization of cyclotomic integers Cp into ideal primes be 
made transparent? 
(iii) Can it be extended to domains other than Cp? For example, to 

“quadratic domains”, Z a b d a b Zd = + ∈{ : , },  if d ≡ 2 or 3 (mod 4), and 

Z a b d a bd = + ( ){ }/ / : ,2 2  and  are both even or both odd  if d ≡ 1 (mod 4)? ese do-

mains are important in the study of quadratic forms. As a rule they are not ufds. For in-

stance, 5Z {a b 5 : a, b Z}− = + − ∈  is not. For here 6 2 3 1 5 1 5= × = + − − −( )( ),  where 2, 3, 

1 –5,1 – –5+  are primes in Z−5.

It was le to Dedekind to give satisfactory answers to these questions. He did this in a 
revolutionary work in 1871, introducing the concepts of eld, ring, and ideal—in the context of 
the complex numbers—and formulating a broadly applicable Unique Factorization eorem 
(UFT).

A central idea in this work is that of an “algebraic number eld”. Let a be an al-
gebraic number—a root (recall) of a polynomial with integer coecients—and set 
Q a q q a q a q a q Qn

n
i( ) = + + +…+ ∈{ : }0 1 2

2 , Q the eld of rational numbers. Dedekind 
showed that all the elements of Q(a) are algebraic numbers, and that Q(a) is a “eld”, called an 
“algebraic number eld”. In fact, he was the rst to dene a eld.

Let now ( ) ( ){ }aI la Q a :   is an “ gebraic ”integer= α∈ α ; that is, α is a root of a “monic” 
polynomials with integer coecients. (A polynomial is “monic” if the coecient of the highest-
degree term is 1.) Dedekind showed that I(a) is a “ring”; its elements are called “the integers of 

Ernst Eduard Kummer (–) 
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power series. Mathematicians put their trust in such broad principles because for the most part 
they yielded correct results.

5.5 A Look Ahead: Foundations

Mathematicians of the seventeenth and eighteenth centuries realized that the subject they were 
creating was not on rm ground. For example, Newton armed of his uxions that they were 
“rather briey explained than narrowly demonstrated” [4, p. 201]. Leibniz said of his dieren-
tials that “it will be sucient simply to make use of them as a tool that has advantages for the 
purpose of calculation” [4, p. 265]. e Berlin Academy oered a prize in 1784, hoping that “it 
can be explained how so many true theorems have been deduced from a contradictory sup-
position [namely, the existence of innitesimals]”  [6, p. 41]. Lagrange made an elaborate—but 
essentially misguided—response to this challenge, although his workcould be justied in the 
contemporary setting.

In the late eighteenth and early nineteenth centuries, the work of Lagrange, Joseph Fourier, 
and others forced mathematicians to confront the lack of rigor in calculus. Here is Niels-Henrik 
Abel on the subject [11, p. 973]:

 »Divergent series [employed by Newton, Euler, and others] are the invention of the devil. 

By using them, one may draw any conclusion he pleases, and that is why these series have 

produced so many fallacies and so many paradoxes.

Starting in 1821 and continuing for about half a century, a series of mathematicians, including 
Augustin-Louis Cauchy, Bernard Bolzano, Richard Dedekind, and Karl Weierstrass, supplied 
calculus with foundations, essentially as we have them today. e main features of their work 
were:
I. e emergence of the notion of limit as the underlying concept of calculus.
II. e recognition of the important role played—in denitions and proofs—by inequalities.
III. e acknowledgement that the validity of results in calculus must take into account ques-

tions of the domain of denition of a function. (In the eighteenth century a theorem of 
calculus was usually regarded as universally true by virtue of the formal correctness of the 
underlying algebra.)

IV. e realization that for a logical foundation of calculus one must have a clear understand-
ing of the nature of the real number system, and that this understanding should be based 
on an arithmetic rather than a geometric conception of thecontinuum of real numbers.

e work on foundations of calculus did away “for good” with innitesimals—used by Cauchy 
and his predecessors for over two centuries (two millennia, if we consider the Greek contri-
butions). In 1960, innitesimals were actually brought back to life, as genuine and rigorously 
dened mathematical objects, in the “nonstandard analysis” conceived by the mathematical 
logician Abraham Robinson—but that is another story!
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 kFermat’s Last Theorem

Recall that in the seventeenth century Fermat proved FLT, the unsolvability in nonzero integers 
of xn + yn = zn (n > 2), for n = 4. Given this result, one can readily show that it suces to prove 
FLT for n = p, an odd prime. But over the next two centuries the theorem was proved for only 
three more cases: n = 3 (Euler, in the eighteenth century), n = 5 (Adrien Marie Legendre and 
Peter Lejeune Dirichlet, independently, in the early nineteenth century), and n = 7 (Gabriel 
Lamé (1795–1870), in 1837).

A general attack on FLT was made in 1847, again by Lamé. His idea was to factor the le 
side of xp + yp = zp into linear factors (as Euler had already done for n = 3, and for the Bachet 
equation x2 + 2 = y3) to obtain the equation (x + y)(x + yw)(x + yw2) … (x + ywp−1) = zp, where w 
is a primitive p-th root of 1 (,) ww

p
=≠ 11. is is an equation in the domain of “cyclotomic 

integers” of order p, 
2p1

p012p1i C{aawawaw:aZ}
−

− =+++…+∈. Lamé now proceeded to 
prove FLT, using the arithmetic of Cp, as others had done before him for small values of p.

But his proof was awed: it assumed that the arithmetical properties of Z carry over to Cp, 
namely that Cp is a ufd. When Lamé presented his proof to the Paris Academy of Sciences, 
Joseph Liouville, who was in the audience, took the oor to point out precisely that. Lamé 
responded that he would reconsider his proof but was condent that he could repair it. Alas, 
this was not to be.

 kFactorization of Ideals

Two months aer Lamé’s presentation, Liouville received a letter from Ernst Kummer, inform-
ing him that while Cp is indeed a ufd for all p > 23, C23 is not. (It was shown in 1971 that unique 
factorization fails in Cp for all p > 23.) But all hope was not lost, continued Kummer in his letter 
[12, p. 7]:

 »It is possible to rescue it [unique factorization] by introducing a new kind of complex num-

bers, which I have called ideal complex numbers…. I have considered already long ago the 

applications o this theory to the proo o Fermat’s [Last] Theorem and I succeeded in deriv-

ing the impossibility of the equation x
n
 + y

n
 = z

n
 [for all n > ].

Carl Friedrich Gauss (–)
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Problems and Projects

1. Describe some of Pascal’s, Roberval’s, or Wallis’ work in calculus.
2. Discuss the priority dispute between Newton and Leibniz concerning the invention of 

calculus.
3. Write a short essay on Archimedes’ Method.
4. Discuss Euler’s use of power series.
5. Describe the essential elements in Lagrange’s algebraic approach to calculus.
6. Discuss Bishop George Berkeley’s critique of Newton’s calculus.
7. Write an essay on the “Arithmetization of Analysis”. See [1, 4, 8, 11].
8. Discuss some of the errors in calculus in the late eighteenth and early nineteenth centu-

ries resulting from the lack of proper foundations. See [1, 5, 8].
9. Write a brief essay on the basic ideas of nonstandard analysis. See [2–4, 7].
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methods, solved important problems, and furnished mathematicians with new ideas to help 
guide their researches in the decades ahead. Two central problems provided the early stimulus 
for these developments: reciprocity laws and FLT.

 kReciprocity Laws

e “quadratic reciprocity law”, the relationship between the solvability of x2 ≡ p (mod q) and 
x2 ≡ q (mod p), with p and q distinct odd primes, is a fundamental result, established by Gauss 
in 1801. A major problem, posed by him and others, was the extension of that law to higher 
analogues, which would describe the relationship between the solvability of xn ≡ p (mod q) 
and xn ≡ q (mod p) for n > 2. (e cases n = 3 and n = 4 give rise to what are called “cubic” and 
“biquadratic” reciprocity, respectively.) Gauss opined that such laws cannot even be conjectured 
within the context of the integers. As he put it: “such a theory [of higher reciprocity] demands 
that the domain of higher arithmetic [i.e., the domain of integers] be endlessly enlarged” 
[7, p. 108]. is was indeed a prophetic statement.

Gauss himself began to enlarge that domain by introducing (in 1832) what came to be 
known as the “gaussian integers”, Z i Z( ) = + ∈{ : , }.a bi a b  He needed them to formulate a 
“ biquadratic reciprocity law” [7]. e elements of Z(i) do indeed qualify as “integers”, in the 
sense that they obey all the crucial arithmetic properties of the “ordinary” integers Z: ey 
can be added, subtracted, and multiplied, and, most importantly, they obey a Fundamental 
 eorem of Arithmetic—every noninvertible element of Z(i) is a unique product of primes 
of Z(i), called “gaussian primes”. e latter are those elements of Z(i) that cannot be written 
nontrivially as products of gaussian integers; for example, 7 + i = (2 + i)(3 − i), where 2 + i and 
3 − i are gaussian primes [1].

A domain with a unique factorization property such as the above is called (as we have 
seen) a “ufd”. us Z(i) is a ufd. Gauss also formulated a cubic reciprocity law, and to do 
that he introduced yet another domain of “integers”, the “cyclotomic integers” of order 3, 
C a bw cw a b c Z3

2
= + + ∈{ : , , },  where, w ( 1 3i) / 2= − +  is a primitive cube root of 1 

( , ).w w3 1 1= ≠  is, too, turned out to be a ufd. Higher reciprocity laws were obtained in the 
nineteenth and early twentieth centuries [7].

Leonhard Euler (–)
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that they are the only (positive) solutions (see 7 Section . below). Bachet’s equation plays a 
central role in number theory to this day.

6.4 Euler and the BachetEquation x
2
 + 2 = y

3

Leonhard Euler was the greatest mathematician of the eighteenth century, and one of the most 
eminent of all time, “the rst among mathematicians”, according to Lagrange. He was also the 
most productive ever. Although “only” four of a projected 85 or so volumes of his collected 
works are on number theory, they contain priceless treasures, dealing with all of the subject’s 
existing areas and giving birth to new methods and results.

A considerable part of Euler’s number-theoretic work consistedin proving Fermat’s results 
and trying to reconstruct his methods [18]. Euler dealt with diophantine equations (among 
 other topics in number theory) in his book Elements of Algebra (1770). In particular, he solved 
the Bachet equation x2 + 2 = y3 by introducing a new—and most important—idea, namely 

 factoring the equation’s le-hand side. is yielded () x2i. + ()
3

x2iy, −= an equation in 

a domain D of “complex integers”, where D{ab2i:a,bZ}. =+∈ Euler proceeded as follows:
If a, b, and c are integers such that ab = c3, and (a, b) = 1 ((a, b) denotes the greatest common 

divisor of a and b), then a = u3 and b = v3, with u and v integers. is is a well known and eas-
ily established result in number theory. (It holds with the exponent 3 replaced by any integer, 
and for any number of factors a, b, ….) Euler carried it over—without justifying the move—to 

the domain D. Since, ()()
3

x2ix2iy +−= and (x2i,x2i)1 +−= (Euler claimed, with-

out substantiation, that (m, n) = 1 in Z implies () mn2i,mn2i1inD), +−= it follows that 

()()()
3

3223
x2iab2ia6ab3ab2b2i +=+=−+− for some integers a and b. Equating 

realand imaginary parts we get x = a3 − 6ab2 and 1 = 3a2b − 2b3 = b(3a2 − 2b2). Since a and b are 
integers, we must have a = ± 1, b = 1, hence x = ± 5, y = 3. ese, then, are theonly solutions of 
x2 + 2 = y3.

To have Euler’s proofmeet modern standards of rigor, one would need to dene “unique 
factorization domain” (ufd),show that the domain D is a ufd, and verify the steps used above 
without justication. But Euler apparently had no compunction in viewing his solution of the 
diophantine equation x2 + 2 = y3 as legitimate.

Rigor aside, Euler had taken the audacious step of introducing complex numbers into num-
ber theory—the study of the positive integers. “A momentous event had taken place”, declared 
André Weil (1906–1998), adding: “Algebraic numbers had entered number theory—through 
the back door”[18, p. 242]. (An “algebraic number” is a complex number which is a root of 
a polynomial with integer coecients.) While Euler had earlier wedded number theory to 
 analysis [5, 18], he now linked number theory with algebra. is bridge-building would prove 
mostfruitful in the following century.

6.5 Reciprocity Laws, Fermat’s Last Theorem, Factorization of Ideals

Before the nineteenth century number theory consisted of many brilliant results but oen 
lacked thematic unity and general methodology. In his masterpiece, Disquisitiones  Arithmeticae 
(1801), Gauss supplied both. He systematized the subject, provided it with deep and rigorous 
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6.1 Introduction

Number theory, also known as “arithmetic”, or “higher arithmetic”, is the study of properties 
of the positive integers. It is one of the oldest branches of mathematics, and has fascinated 
both amateurs and professionals throughout history. Many of its results are simple to state and 
understand, and many are suggested by concrete examples. But results are frequently very dif-
cult to prove. It is these attributes of the subject that give number theory a unique and magical 
charm, claimed Carl Friedrich Gauss, one of the greatest mathematicians of all time.

To deal with the many dicult number-theoretic problems, mathematicians have had to 
invoke—oen to invent—advanced techniques, mainly in algebra, analysis, and geometry. So 
began, in the nineteenth and twentieth centuries, distinct branches of number theory, such 
as algebraic number theory, analytic number theory, transcendental number theory, and the 
geometry of numbers. It is in the context of algebraic number theory that we will encounter 
various “arithmetics”.

6.2 Ancient Times

“Diophantine equations”, so named aer the Greek mathematician Diophantus (. c. 250 AD), 
who examined them extensively, have been a central theme in number theory. ese are equa-
tions in two or more variables, with integer or rational coecients, for which the solutions 
sought are integers or rational numbers. e earliest such equation, x2 + y2 = z2, dates back to 
Babylonian times, about 1800 BC. It has been important throughout the history of number 
theory. Its integer solutions are called “Pythagorean triples”.

Records of Babylonian mathematics have been preserved on clay tablets. One of the most 
renowned, named “Plimpton 322”, consists of een rows of numbers, which have been inter-
preted as een Pythagorean triples, each triple perhaps giving the sides of a right triangle [8, 
p. 19]. ere is no indication of how they were generated, or why (mathematics for fun?), but 
the listing suggests, as do other sources, that the Babylonians knew the Pythagorean theorem 
more than a millennium before the birth of Pythagoras (c. 570 BC).

6.3 Fermat

Pierre de Fermat was arguably the greatest mathematician of the rst half of the seventeenth 
century—though a lawyer by profession! In mathematics he made fundamental contributions 
to several areas, but number theory was his special passion. In fact, he founded that subject in 
its modern form.
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Fermat’s interest in number theory was aroused by Diophantus’ acclaimed work Arithmeti-

ca [6]. He famously noted in the margin of Problem 8, Book II of Diophantus’ book, which gave 

the representation of a given square as a sum of two squares, that —in contrast to that result—

 » It is impossible to separate a cube into two cubes or a fourth power into two fourth powers 

or, in general, any power greater than the second into powers of like degree. I have discov-

ered a truly marvelous demonstration, which this margin is too narrow to contain [4, p. 2].

Fermat thus claimed that the equation zn = xn + yn has no (nonzero) integer solutions if n > 2. 

is has come to be known as “Fermat’s Last eorem” (FLT), and was perhaps the most out-

standing unsolved problem in number theory for 360 years. e distinguished mathematician 

André Weil (1906–1998) said the following about Fermat’s claim [18, p. 104]:

 » For a brief moment perhaps, and perhaps in his younger days, he must have deluded him-

self into thinking that he had the principle of a general proof [of FLT]; what he had in mind 

on that day can never be known.

e Princeton mathematician Andrew Wiles, who supplied a proof in 1994 [9, 14]—more than 

three centuries aer Fermat’s claim—also thought it most unlikely that Fermat had succeeded. 

(Fermat did not give any proofs in his number-theoretic work, with the exception of FLT for 

n = 4, which is easier than for n = 3.)

Another important equation considered by Fermat is the “Bachet equation”, x2 + k = y3 

(k is an integer), named aer Claude-Gaspar Bachet de Mézeriac (1581–1638), a member of an 

informal group of Parisian scientists. Fermat found the (positive) solutions of x2 + 2 = y3 and 

x2 + 4 = y3, namely x = 5, y = 3 for the rst equation, and x = 2, y = 2 and x = 11, y = 5 for the second. 

It is easy to verify that these are solutions of the respective equations, but rather dicult to show 

Pierre de Fermat (1601–1665) 
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