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A linear, physiologically based, three-dimensional finite element model of the cochlea is developed.
The model integrates the electrical, acoustic, and mechanical elements of the cochlea. In particular,
the model includes interactions between structures in the organ of Corti (O0oC), piezoelectric
relations for outer hair cell (OHC) muotility, hair bundle (HB) conductance that changes with HB
deflection, current flow in the cross section and along the different scalae, and the feed-forward
effect. The parameters in the model are based on guinea-pig data as far as possible. The model is
vetted using a variety of experimental data on basilar membrane motion and data on voltages and
currents in the OoC. Model predictions compare well, qualitatively and quantitatively, with
experimental data on basilar membrane frequency response, impulse response, frequency glides, and
scala tympani voltage. The close match of the model predictions with experimental data
demonstrates the validity of the model for simulating cochlear response to acoustic input and for
testing hypotheses of cochlear function. Analysis of the model and its results indicates that OHC
somatic motility is capable of powering active amplification in the cochlea. At the same time, the

model supports a possible synergistic role for HB motility in cochlear amplification.
© 2007 Acoustical Society of America. [DOI: 10.1121/1.2713725]

PACS number(s): 43.64.Bt, 43.64.Kc [WPS]

I. INTRODUCTION

In this paper, we develop a linear, physiologically based,
three-dimensional finite element model of the cochlea that
explicitly couples the electrical, acoustic, and mechanical el-
ements of the cochlea. The normal function of the cochlea
relies on a carefully orchestrated tripartite mechanical, elec-
trical, and acoustical (fluidic) coupling. Acoustic stimulation
of the cochlea launches a fluid-structure traveling wave
along the basilar membrane (BM) and other cochlear struc-
tures (e.g., Ref. 1) and a concomitant electrical response (one
manifestation of which is the cochlear microphonic, e.g.,
Ref. 2), each correlated to the input stimulus. Artificial intra-
cochlear electrical stimulation results in emission from the
ear’ and predictably alters the mechanical response of the
BM to input sound. Since the discovery of outer hair cell
(OHC) somatic electromotility,5 these cells have been the
focus of investigation as a mediator of electrical-structural
interaction and of amplification. There exists a body of evi-
dence supporting this hypothesis. For instance, it has been
found that drugs that decrease OHC motility in vitro likewise
decrease the amplitude of the BM velocity and sharpness of
the frequency filtering in response to acoustic stimulus (e.g.,
Ref. 6). OHC electromotility covers the entire mammalian
auditory frequency range extending to at least 70 kHz
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in vitro’ and up to 100 kHz in vivo.® The OHC provides both
forward transduction, converting mechanical energy to elec-
trical, and reverse transduction, converting electrical energy
to mechanical. Forward transduction also occurs in the OHC
stereocilia hair bundle (HB) at acoustic frequencies, as their
conductance depends on the rotation of the stereocilia,” the
so-called mechanoelectrical transducer (MET) sensitivity.
The cycle-by-cycle conductance changes are paramount to
normal cochlear response as they are hypothesized to drive
the OHC electromotility. Reverse HB transduction at acous-
tic frequencies has been hypothesized10 as a potential ampli-
fication mechanism, leading to the possibility of simulta-
neous high frequency force generation by the stereocilia and
the OHC soma. As measurement techniques are improved
and more physiological conditions are used, estimates of the
time constant of electrically induced motility of the hair
bundle are shifting downward to the tenths of millisecond
and postulated to be as fast as 50 ,u,s.“’12 However, there are
no data on electromotile force generation from the stereocilia
at frequencies greater than a few Kilohertz.'""* Such an ef-
fect is not yet included in the model developed in this paper.
The coupling of two features, OHC somatic electromotility
and HB conductance changes, is included.

Although it has been shown that the OHC electromotil-
ity is effective in vivo,8 it is not clear how OHCs can provide
amplification at high frequencies in the face of the low trans-
membrane impedance due to its basolateral membrane ca-
pacitance. In order to overcome the reduction in motility due
to filtering of the OHC transmembrane potential by the ba-
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solateral conductance and capacitance, some modelers use an
unreasonably large OHC active force' or directly compen-
sate for the reduction in OHC active force with frf:quency.15
A detailed micromechanically based model is developed in
Ref. 16. In that study, the OHC active force is realistic in its
magnitude and proportional to OHC hair bundle deflection.
However, an additional constant, but still ad hoc, phase fac-
tor is added. Lim and Steele'’ develop a purely mechanical
model showing that a feed forward model can be used to
produce the correct phasing of an active force applied to the
BM. However, an analysis of the currents necessary to pass
through the active cells is not performed (as the model is
purely mechanical) and the levels of the force needed are not
provided. In Ref. 18, a realistic OHC active force is em-
ployed along with subpartitions [BM, TM, and reticular
lamina (RL)] to show nearly 35 dB relative gain between
passive and active response. However, the OHC and HB dis-
placement are not explicitly derived from the micromechan-
ics.

We present a method that explicitly models the electri-
cal, fluid, and mechanical domains and their interaction. This
key step is circumvented in most other models by using
physiologically motivated arguments linking the response of
the BM or the stereocilia directly to the force generated by
the OHCs. Dimitriadis and Chadwick"’ proposed a fully
coupled model, but presented no predictions from it. We
present the piezoelectric behavior of the OHC at a more
physiological level than has been done previously by explic-
itly representing the electrical domain and coupling it to the
micromechanics. The model matches qualitatively and quan-
titatively a wide range of measures seen in experiments. In-
deed, the purpose of this paper is to illustrate the close match
between the experimental results observed at basal locations
in the cochlea and the results predicted using the physiologi-
cally based mathematical model. Furthermore, we demon-
strate robustness of the model predictions to changes in
model parameters. The model results show that OHC so-
matic force generation is quite capable of producing the am-
plification seen in vivo.

Il. THE MODEL

The model has been built with an objective to simulate
BM response to acoustic signals. With this aim in mind, sim-
plifications were made while creating the cochlear model, in
order to focus on the mechanisms involved and to show their
interplay. The fundamental components and assumptions can
be listed rather readily, but the details of the modeling, natu-
rally, are somewhat involved. In short, the model couples an
inviscid, uncoiled, two-duct model for the macroscopic fluid
to the BM (see Fig. 1). The locally reacting model of the BM
also interacts with a micro-mechanical model of the organ of
Corti (OoC) that includes transverse and radial motion of the
TM. Viscosity is incorporated through damping of the OoC
and the BM. A cable model is used to represent the macro-
scopic current flow in the scalae. Electromechanical coupling
arises from a piezoelectric model for the OHC soma. The AC
transducer current through the HBs is driven by the displace-
ment dependent conductance of the HBs which modulates
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FIG. 1. Illustration of the model used for simulating the cochlea. Organ of
Corti is only pictured at one cross section. In the mathematical model it is
included over the entire length of the basilar membrane.

the resting potential. We study small perturbations about an
operating point. Hence a linearized model is used. These
components of the model, their interaction, and the numeri-
cal modeling are detailed next.

A. Fluid and the basilar membrane

Figure 1 illustrates a schematic of the standard box
model of the cochlea (e.g., Ref. 20) that is used to approxi-
mate the fluid domain. The x coordinate is identified with the
longitudinal direction of the cochlea, while the y and z coor-
dinates represent a cross section of the cochlea with the z
coordinate normal to the BM (the transverse direction), and
the y coordinate in the radial direction. The box model for
the cochlea is assumed to have rigid walls and is filled with
fluid similar to water. The macroscopic fluid response is as-
sumed to be incompressible and nonviscous. For the purpose
of this study only harmonic motions of the system were con-
sidered. A time dependence of €' is assumed, where w is the
angular frequency. The governing equation for the (incom-
pressible, inviscid) fluid is

Vip =0, (1)

where p is the pressure in the fluid. The duct is divided into
two equal sections by the BM which lies in the x—y plane.
The BM extends to the helicotrema, which is modeled as a
1 mm hole connecting the two ducts. For computational
efficiency a modal decomposition of the fluid is used in
the radial (y) direction, as in Ref. 20,

(mﬂ'(y + W/2)>
w

1l

M
plx,y,z) = > Pm(x,2)cos

m=0

E =y E (2)
2 YTy

where w is the width of the duct, m is the mode number, and
M is the total number of modes used in the y direction. The
decomposition results in a series of M two-dimensional
problems to solve for p,,(x,z). The fluid velocity is related to
the fluid pressure by the linearized Euler relation,

Vp =-ipwvy, (3)

where p is the density of the fluid (water), and v; is the fluid
velocity.

The BM is modeled as a set of parallel simply supported
beams. Hence, longitudinal stiffness coupling is not included
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in the model, as we attribute to the fluid the main coupling in
the x direction. Arguments for including longitudinal struc-
tural coupling in the BM have been made previously (e.g.,
Ref. 21). The present model can be extended to include such
effects but we have not done so in this paper. The BM mo-
tion is decomposed into a sum of modes in the radial direc-
tion,

Uom(%,Y) = 2 ()W, (), )
where
W (y) = sin(M), —b2<y<bhn,

and b is the width of the membrane. In this study we con-
sider multiple modes for the fluid but only the first mode for
the BM. Higher modes of the BM are not included because
motion of the BM seen in vivo is quite similar to the first
symmetric mode.”” In deriving the equations of motion (Sec.
IT C) and kinematic relations (Sec. IT B 2) only the first mode
of the BM is considered. The superscript for the first BM
mode has been dropped in subsequent equations in this pa-
per.

Taking advantage of the orthogonality of modes, a series
of two-dimensional equations can be obtained for the fluid
and the BM by integrating out the radial dependence:

ﬂzp m &zp 9 Fm

m7T 2
(9)(2 (?2 - W Pm(XZ) 0, O0sms=M, (5)

b
E(_ 1wbm(x)w2 + iCbm(x)w + Kbm(x))”bm(x)

- 2 (PSV p )/-Lm+ Q,u,mech’ (6)

where M, Cyn, and K, are the resultant mass, damping,
and stiffness, respectively, for the first structural mode; prsnv
and pfnT represent the pressure loading on the BM from the
fluid corresponding to mode m in the scala vestibuli and
scala tympani, respectively; u,, is the coupling coefficient
resulting from the integration of the lateral modes for pres-
sure and BM displacement,20

b2
= f cos( mar(y + w/2) )Sin( 7(y + b/2) )dy, )

) w b

and Q,imech 18 the force from the micro-electro-mechanical
model described in Sec. II C, Eq. (32). The factor b/2 in
Eq. (6) arises from the integration of the first BM mode
over the width of the BM.

B. Micro-electro-mechanical model
1. Electrical environment

The macroscopic spread of current through the different
scalae is modeled using one-dimensional cables.” Figure 2
shows the circuit at a given cross section in the cochlea. The
model includes cables for current flow in the scala vestibuli
(SV), the scala tympani (ST), and the scala media (SM). The
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FIG. 2. Electrical network at a given cross section of the cochlea. The SV,
SM, and ST cables run longitudinally along the cochlea, ¢, represents ST
potential at an apical location (x+&x) in the cochlea relative to the other
quantities. This allows for the possibility of forward inclination of the OHCs
(see the feed-forward effect in Sec. II B 4). The factor of three multiplying
the apical and the basolateral membrane capacitance, and dividing the apical
and the basolateral membrane resistance of the OHC is to account for the
three OHCs in a cross section.

ST cable represents the potential in the ST very close to the
BM or just in the interstitial space of the OoC, outside the
OHCs. Away from the BM, the ST is modeled as being
nearly ground. Resistances ry,, r,, Fy represent resistance
per unit length along the SV, SM, and ST cables, respec-
tively; R, is the resistance seen by the current flowing from
the SV to the SM; R, is the resistance to current flowing
from SV to ground; R is the resistance to flow of current
flowing from ST/interstitial space to ground. Rg and C, rep-
resent the apical resistance and capacitance, while R,, and C,,
represent the basolateral resistance and capacitance, respec-
tively, of the outer hair cells. /;; and I, are current sources
due to the variable HB conductance and OHC electromotil-
ity, respectively [explained in Sec. II B 3, see Egs. (20) and
(23)]. The voltages shown in Fig. 2 represent the fluctuating
(or AC) part of voltages in the different scalae. The voltages
are at the same cross-section except for the ST voltage. Due
to the forward inclination of the OHCs (the feed-forward
effect), the ST voltage is located at a certain distance (the
feed-forward distance) apical to the location of the other
three voltages [see Sec. II B 4, and Eq. (28)].

The electrical domain equations are determined using
Kirchhoff’s laws. In each cross-sectional circuit branch,
there are four electrical potentials, the SV (¢,), the SM
(Pgm), the OHC (cpype), and the ST (o). In addition to cur-
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FIG. 3. Micromechanical model for the organ of Corti structures. The sketch
is drawn for =g and is pictured here with no feed-forward in the x direc-
tion. BM: Basilar membrane; TM: Tectorial membrane; OHC: Outer hair
cell; RL-Reticular Lamina. Ly, is the distance between RL pivot point on the
arch of Corti and the middle OHC; L, is the radial distance between OHCs
along the RL; 6, is the acute angle between the inner pillar cell and the BM,
0, is the acute angle between the inner and outer pillar cell, L, is the
distance along the BM between the left edge of the BM and the contact
point of the outer pillar cell with the BM, L, is the distance along the BM
between the left edge of the BM and the contact point of the middle OHC
with the BM, and L, is the length of the TM from its pivot to the attach-
ment point of the middle row HBs with the TM.

rent flow in the cross section, current flow along the length
of the cochlea is also allowed in the three scalae. Applying
Kirchhoff’s laws (in both longitudinal and cross-sectional di-
mensions) to the circuit shown in Fig. 2 yields

1 Py, ( 1 1 ) 1
—— | —f — |+ —. =0, 8
o R TR bo R Dim (8)
1 s 1 Py ( 1 3y>¢
— ¢+ —— - | —+
Rvm Y rsm §x2 Rvm ¢ o

+3Y Pone — 11 =0, 9)

3Ya¢sm_3(Ya+Ym)¢0hc+3ym¢:t+1sl_Ix2:os (10)

1 P},
3Y Pone + Z[ [?jf;t -
In Egs. (8)~(11), Y,=1/R°+iwC,=G +iwC, and Y,,=1/R,,
+iwC,, are the admittances of the apical and basolateral por-
tions of the OHC, respectively. The + superscript indicates a
location apical to the longitudinal location under consider-
ation as explained in the section on feed-forward (Sec.
II B 4). In this model, the only current path from the SM to
the ST is assumed to exist at the apical pole of the OHC and
all other junctions at this interface are assumed to be tight.

1
<—+3Ym>q5:t+132=0. (11)
Ry

2. Kinematic model of microstructures

Figure 3 shows a representation of the kinematic model
of the (OoC) used in the model. A kinematic model is con-
structed based on Ref. 24 with different stiffnesses being
represented as springs at various locations. The masses of the
organ of Corti structures are lumped onto the TM and the
BM. The TM is assumed to have two degrees of freedom—a
radial (or shear) mode and a transverse (or bending) mode
(see Fig. 3). Damping in the system is accounted for through
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structural damping of the BM and the viscous damping as-
sociated with TM motion. Coupling arising from phalangeal
processes is neglected, but the feed-forward effect arising
from OHC inclination is included. Since the Deiters cell
(DC) impedance is in series with OHC impedance and is at
least a couple of orders higher in magnitude,21 the DC is
taken as a rigid connection. The RL is modeled as a massless
rigid bar. The HBs are also modeled as rigid links. Note that
in this representation, the RL and TM are not constrained to
stay parallel and the fluid in the sub-tectorial space is not
modeled explicitly. The effects of the pressure and fluid mo-
tion associated with squeezing the subtectorial fluid layer are
not yet included in this model. Only the BM interacts di-
rectly with the fluid.

The equations of motion for the OoC are expressed in
terms of the BM and the two TM degrees of freedom using
Lagrange’s method (see Sec. I C). In deriving the equations
of motion, the displacement of the OHCs, and the rotation of
the HBs and the RL are required. In this section, we list the
kinematic assumptions used to express motion of the OHC,
HB, and RL in terms of the BM and the TM motion. The
kinematic equations obtained in the following are for very
small motions. The OHC and HB angles (« and B, respec-
tively) referred to in Fig. 3 pertain to only the middle row
OHCs and HBs. Kinematic relations for the middle row
OHCs and HBs are first derived ignoring the rigid HB links
from the first and third row OHCs (otherwise it is a locked
mechanism). The kinematic relations for the first and third
row cells are then extrapolated from the middle row rela-
tions.

The arch of Corti is assumed to be rigid and hence ro-
tates when the BM is displaced. The displacement of the
apical end of the arch of Corti (top of the pillar cells) is
therefore given by

uap(x) = Mbm(x)qil(blz - ch)snl(.al—+62)s (12)

sin(6,)

where upy,(x) is the amplitude of the first mode of BM
displacement at location x and W(b/2-L,) is the first
mode shape of the BM evaluated at y=b/2~L, (b is the
width of the BM). To determine OHC compression, de-
flections of the OHC-apex and OHC-base along the OHC
are computed. The motion of the middle row OHC-apex
toward the BM and along the OHC is given by

o in(6, + 6,)
Mohcz(x) =y, (X)W (b2 - LPC)SmSin#
cos(6, - B)
X (— cos(6, — a) + S )
— uyns(X)tan(a — B) — tyyp(x). (13)

The motion of the middle row OHC-base toward the RL and
along the OHC is

ughcz(x) = U, (X)W (b/2 = L,)cos(a). (14)

The total compression of the OHC will be the sum of these
displacements. However when feed-forward is present, the
apical end displacement and basal end displacement of the
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OHC will occur at different longitudinal (x) locations. The
details of computing the OHC deformation associated with a
feed-forward model are discussed in Sec. II B 4.

The twist in the coil spring attached to the HBs is a sum
of the rotation of the HBs (due to BM and TM motion) and
rotation of the RL (due to BM motion). For small motions,
the relative shear motion between the top end (the end con-
nected to the TM) of the middle row HB and its bottom end
(connected to the RL), in a direction normal to the HB and
toward the outer rows of HBs (toward negative y direction in
Fig. 3) is

sin(@, + 6,) sin(6, — )
sin(6,) cos(a— B)

Upp, (X) = ()W (D2 = Ly,)

utms(x)
cos(a—p)’

This HB shear divided by the height of the HB yields the HB
rotation relative to its resting position. For small motions, the
RL displacement at the location of the middle OHC relative
to its (the RLs) attachment at the pillar cells, in a direction
normal to itself (RL) and away from the OHC (toward posi-
tive z direction in Fig. 3) is given by

sin(6; + 6,) cos(6; — B)
sin(#,) cos(a—B)
B) + ump(x). (16)

This RL motion at the middle OHC normal to itself divided
by distance from the pivot (L,, for the middle OHC) gives
the rotation of the RL relative to its resting position. The
sum of the HB rotation and RL rotation yields the angle of
twist in the coil spring connecting the HBs to the RL.

These quantities can then be derived for the first and
third row OHCs and HBs using the middle row displace-
ments as reference and the relative lever ratios. For example,
the displacement of the apical end of the first row OHC can
be written as

(15)

urlz(x) == Mbm(x)\l,] (b/z - ch)

+ Uy (x)tan(a —

o in(6, + 6,)
Mohcl(x) = U, (X)W (b/2 - LPC)smsin#
O =1
Ro o —
Ly L
(1 - LRO)”tmb(x) (1 - L—Rlo)
X tty(x)tan(a — B). a

These corrections for the first and third row locations are
small and can be neglected. They were however included for
the results presented in this paper.

3. Hair bundle conductance and OHC electromotility

The coupling between the electrical domain and the me-
chanical domain occurs through the variable conductance of
the HBs and electromotility of the OHCs. The HBs are as-
sumed to have a conductance which changes linearly with
the deflection of the HB,
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Ga}-:G2+G¢11Mhhj‘ (]8)

Here G, is the conductance of the jth HB as a function
of its deﬂectlon up, , where j=1,2,3 is the radial counting
index for the OHC. Ga represents conductance at the resting
state (G°=1/R?) of the HB and G! represents slope of the
change of conductance with respect to the HB deflection; we
will denote this as the mechanoelectrical transducer (MET)
sensitivity. G0 and G1 are assumed constant at a given cross
section. The current ﬂowmg through the jth HB (Ihb) is the
product of the apical admittance and the potential drop from
the SM to the OHC interior. The linearized expression for
this current is

Ihbj = (GY+iwC,)(yn— bone) + (Vem— Vohc)Gzlzuhbj’

(19)

where Vg, and V. are the voltages at resting state in the
SM and the OHC, respectively, and C, is the apical ca-
pacitance of the OHC. As explained in Sec. II B 1, the
quantities ¢, and ¢, are the fluctuating parts of the
voltages in the SM and the OHC, respectively, and are
assumed to be the same for each HB at a given cross
section. The contribution of the variable conductance to
the total HB current at a given cross section is expressed
as an equivalent current source I, in the model (see Fig.
2) whose value is given by

3
I = (Vsm - ohc)G(lzz uhbj' (20)
J=1

The OHC electromotility is modeled through linearized ex-
pressions relating OHC strain and transmembrane voltage to
the OHC force and current™ as

Fohcj = ohcug?l[cr;p + 63(¢ohc - d):t)s (21)
Iohcj = (¢ohc - (ﬁ:t)/zm - inSM(C)EI;}p~ (22)

Here FohC is the force exerted by the jth OHC on the BM
and the RL IohC is the current flowing through the jth OHC,
ug‘flmp represents compression in the jth OHC, e is the elec-
tromechanical coupling coefficient, Z,, is the net basolateral
impedance of the OHC given by 1/Z,=1/R,,+iwC,, (see
Fig. 2), (¢one— @) is the alternating (AC) basolateral trans-
membrane potential (the term ¢, is explained in Sec. Il B 4,
and K, is the stiffness of the OHC. The potentials and OHC
properties (K., €3,7,,) are assumed to be the same for each
OHC at a given cross section. The current source /,, shown
in Fig. 2 corresponds to the total current due to the
piezoelectric-like behavior of the OHC,

, == uuqz uf)ﬁ?p. (23)

Equations (19) and (22) show how deformation of the
organ of Corti leads to additional current flow through the
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HBs and the OHCs, while Eq. (21) shows how modulation of
the OHC transmembrane potential leads to an equivalent
force generation by the OHCs.

4. Feed-forward

The OHCs in vivo are inclined toward the base of the
cochlea. This inclination is hypothesized to “feed-forward”
the energy26 in the cochlea. Therefore, the force exerted by
an OHC is not completely in the y—z plane. To include the
feed-forward effect, we now have to decompose F. into
apical and basal locations. !

F¢,. represents force at the apical end (or top end) of the
Jjth OHC. Similarly F%, represents force at the basal end (or
bottom end) of the jth OHC. F' (x) depends on field quan-
tities at x and at x+ & while F?, '(x) depends on field quan-

ohc
tities at x and x— &, where Sx is the feed-forward distance,

ohc :

thcj(x) = (Kohc(ughcj + uohc ) + 63(¢0hc ¢;))COS(¢)’
(24)

ohc (x) (Kohc(uohc + ughcj) + 63(¢;hc - ¢’st))COS(¢),
(25)

where ¢ is the angle of forward inclination (toward the base)
of the OHCs with the vertical. Expressions for uohc and ughc.
are given in Eqgs. (13) and (14) in Sec. II B 2. The + and —
superscripts represent locations apical or basal, respectively,
to the given location in the cochlea, i.e., the displacements
and voltages at location x+ &x and x— dx, respectively, if x is
the location under consideration. Since the feed-forward dis-
tance is small (=5-10 wum), in our implementation we use
the Taylor series approach and retain only the first-order
terms. That is,

b ughc (x)
uogcj Ohc (x+ x) = uohc (x) + —dxf—éx, (26)
ditgy (x)
ohc ohc (x 5)() = uohc ()C) — &, (27)
dx
doy
Bim bl 89 = (0 + T 5 (3)
d
¢;hc = ¢0hc(x - 5)6) = ¢0hc(x) - %d—l;(:(x)ax~ (29)

C. Local governing equations

The derivation of the local equations for the mechanical
degrees of freedom is described in this section. The depen-
dence of the variables on the axial location x has been as-
sumed and not explicitly written. The kinetic and potential
energy for this whole system, at a given location x, can then
be written as

1

Te My i+ S+ i (30)
= 2 tmstms 2 tmbHtmb 2 bm#bm>
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1 ) 1 2 1 ) 1
V= EKbmubm + EKtmsutms + EKtmbthb + EKhb

Ly, |’ Ly |\’
X <<Mhb1 + Ltrll I 1 ) + Mhb2 + urlzL_
Ro ™ Ro

L 2 1 u, 2
+ (”hb + Uy b ) ) + _Krl(url + _dRLR()) s
3 3po+ Ly 2 2 Ly,

(31)

where u,, Kime Mims represent the displacement, stiffness,
and mass of the TM shear mode, respectively, and v, K,
M, represent corresponding quantities for the TM bending
mode. In Egs. (30) and (31) the rotational stiffnesses of the
coil springs for the HBs, the TM, and the RL are converted
to equivalent linear stiffnesses after multiplying with appro-
priate lengths.

The generalized work done by external forces (including
the electromotile forces from the OHCs, the acoustic pres-
sure, and nonconservative viscous damping) is given by

2 hc ohc

- E Fnhc ohc E (pSV _p )ubmlu’m

(Ctmbutmb) Utmb-
(32)

- (Cbmubm)ubm - (Clmsutms)ulms -

The net normal fluid force acting on the TM from the sulcus
and SM is assumed to be smaller than the normal HB forces
acting on the TM. Hence, the TM interaction with the fluid is
not included. The BM interacts with the fluid through the
pressure difference in the SV and ST [see Eq. (6)]. The ex-
pression for thc and F’,_ can be obtained from Egs. (24)
and (25). The terms Cbm, C[ms, and Cy,;, represent viscous
damping coefficients for BM, TM bending, and TM shear
modes, respectively.

The governing equations of motion for the mechanical
variables, including coupling to the electrical and acoustic
domains, are found from the variation of the Lagrangian (L
=7-V) with respect to the three mechanical variables (uyy,,
Uymss and thb):

dJdL JL o
g% _R_X (33)
where i varies over bm, tms, and tmb. The expressions for
the final set of equations are not listed due to space con-
straints.

D. Finite elements

The expressions given in the preceding sections consti-
tute the strong form of the equations. These are used to de-
rive the weak form after multiplying with corresponding
weighting functions and integrating over the domain.” The
final set of equations have the following form:
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TABLE I. Geometric data for the macromodel (see Fig. 3).

Property Value Source

BM width (b) 80 um (base) to Ref. 28
200 pm (apex)

BM thickness (k) 7 wm (base) to Ref. 28

Lone

Ly,

Duct height for SV, ST (H)
Duct width (W)

Duct length (L)

1 wm (apex)
b/3
9 um
b/2
60 um (base) to
180 wm (apex)
Calculated from Fig. 3
25° (base) to 45° (apex)
25° (base) to 45° (apex)
60°
60°
20 wm (base) - 85 um (apex)
1 pwm (base) - 6 wm (apex)
1 mm
1 mm

25 mm

Adapted from Refs. 33 and 24
Based on OHC diameter
Adapted from Refs. 33 and 24
Adapted from Refs. 33 and 24

Ref. 34

Assumed
Adapted from Refs. 33 and 24
Adapted from Refs. 33 and 24

Ref. 34

Ref. 9

Ref. 28

Ref. 28

Ref. 28

Ky Qs 0 ([P fr
st Ks Qse u|={0]. (3 4)
0 Q. K. ]|\¢ 0

The matrix is unsymmetric due to the nonreciprocal MET
function (QesiQ:;) and the feed-forward effect. Linear
spatial interpolations are used for the structural and elec-
trical degrees of freedom while bilinear interpolations are
used for the fluid. The quantity K is the dynamic stiffness
of the fluid, Ky is the dynamic stiffness of the microme-
chanical structures, and K, represents the interaction
among the electrical degrees of freedom. Among the off-
diagonal terms, Q. and Q,, represent electrical-structural
coupling at the OHCs, and Qg and Qg are from fluid-
structure coupling at the BM. On the right-hand side, f;
represents any forcing on the fluid. Using a reference dis-
placement at the stapes, the linear matrix equation is
solved to determine the fluid pressure (p), structural dis-
placements (u), and electrical potentials (¢) at the nodes.

lll. MODEL PARAMETERS

The model has a necessarily large number of parameters.
The values are listed in Tables I-III. Where possible, we
used or extrapolated parameters from published data (refer-
ences indicated in the tables). In this section, we describe
how the parameters were selected and the assumptions un-
derlying those data for which hard experimental values are
not available.
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A. Mechanical parameters

The effective BM stiffness for the first mode is calcu-
lated from the radial flexural rigidity estimated in Ref. 27.
For a simply supported BM, the radial flexural rigidity (D) is
estimated to be about 2.5X 10~! N m for basal locations in
the guinea pig.27 Using this value, one can compute the ef-
fective BM stiffness for the first mode,

5l
Kom=D|—] , (35)
b

where b is the width of the BM. The BM thickness (/) and
width (b) are estimated from Ref. 28. Although variation in
D along the length of the BM was not found to be statisti-
cally significant,27 the radial flexural rigidity is expected to
depend on the BM thickness h (D> h3). We therefore in-
clude a cubic dependence of D on the BM thickness /. Ac-
counting for this difference in interpretation of D, and esti-
mating the BM thickness to be 6.6 um and BM width to be
90 wm at about 1 to 2 mm from the base (corresponding to
the location where point stiffness measurements were
made by Gummer et al.*’), the estimated Ky, for the most
basal location (x=0) works out to 6.69X 10" N/m?. We
use a value of 6X 10" N/m? at x=0 in the model.

HB stiffness measurements were made in guinea pigs by
Strelioff and Flock.”” Those measurements were extrapolated
to indicate average stiffness of HBs ranging from 63.9 to
284 mN/m for different rows of OHCs at the extreme base
of the cochlea (x=0). To choose a value for the model the
following considerations were made. Using a density of 100
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TABLE II. Mechanical properties for the macromodel. x is in meters.

Property Value Source
BM stiffness (K,,) 6 X 10°(h/hy)3(by/b)* N/m3 Ref. 27
TM bending stiffness (K,;,) 6 X 10%(-22%9 N/m? Ref. 31
TM shear stiffness (Kyps) 6 X 10%(-2200 N /m? Ref. 31

RL stiffness (K,
HB stiffness (K}p)
OHC stiffness (K)

BM mass per unit
area (M)

BM viscous damping (Cy,)
(includes fluid viscosity)

TM bending damping (C,,,)
TM shear damping (Cy,,)

Effective TM
shear mass (M)

Effective TM
bending mass (M)

Round window stiffness

Round window damping

7.6 X 1033259 N/m?
3.42 X 10%732%) N/m?
7.6 X 1033259 N/m?

Pomh kg/m?

pom=1000 kg/m?
0.05 N s/m?

0.05 N s/m?
0.03 N s/m?

Punltinbime™™ kg/m

Pen=1000 kg/m?, 10 =18 pm,
b =60 pum
0.7M s kg/m

1.8 10° N/m?
5.8X10* Ns/m?

Based on Ref. 24
Estimated from Ref. 29
Ref. 30 (see Sec. IIT A)

Density assumed

Assumed

Assumed
Assumed

x variation assumed

Assumed

Assumed

Assumed

rows of HBs per mm for guinea pigs9 yields a stiffness rang-
ing from 6.39 to 28.4 kN/m? at x=0. Strelioff and Flock™
used a large displacement of 1 um to measure stiffness of
HBs and their measurements were not taken instantaneously
at the application of stimulus. A recent study by Kennedy
et al.'' has shown that under excitatory stimulation, the HB

TABLE III. Electrical properties for the macromodel. x in meters.

Property Value Source

& (-8 X 10°-8 % 107x) N/m/mV Ref. 38

1/R? 100 uS/m Estimated using
Ref. 36

1/R,, 5100 uS/m (base) - 360 uS/m (apex) Ref. 35

C, 50 nF/m Estimated using
Ref. 36

C, 1800 nF/m (base) - 4200 nF/m (apex) Ref. 35

G! variable (see Sec. III B) Free parameter

Van— Vone (150-1000x) mV Based on Ref. 37

R, 10 Om Based on Ref. 37

Ry 4 Om Based on Ref. 37

Ry 25 Om Based on Ref. 37

ey 3 MQ/m Based on Ref. 37

Tsm 5 MQ/m Based on Ref. 37

Iy 0.15 Q/m Based on Roc

in Ref. 37
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stiffness noticeably reduces with time. Because of the latter
point, at x=0 a slightly higher number of 34 kN/m? is used
as the average stiffness for HBs in the model. Strelioff and
Flock®® further showed that the HB stiffness decreased at an
exponential rate from the base. The decay rate for the HB
stiffness varied from -238 to —406 m~! between different
rows of OHCs. For simplicity a value of =325 m™! for the
decay rate is chosen, which is near the middle of the pub-
lished range.

OHC stiffness values are available in literature®”. The
stiffness at resting state in vivo and its variation along the
length of the cochlea are not known exactly. We use a resting
stiffness value of about 11 mN/m for OHCs located 6 mm
from the base. The value listed in Table II gives OHC stift-
ness per meter assuming 100 rows of OHCs in 1 mm.” The
spatial variation of OHC stiffness along the length of the BM
is assumed to be same as that of the HB stiffness.

The stiffnesses of other microstructures (TM, RL) are
difficult to estimate, in part because the mode of operation
(kinetics and kinematics) is still not completely known. In
this paper, we put forth a hypothesis of the dominant kine-
matics that follows closely that proposed by Dallos.>* We use
estimates of the TM stiffness from Zwislocki and Cefaratti®'
as a guide to choose TM bending and shearing stiffness val-
ues. The mass of the TM is calculated from dimensions of
the TM and using the density of water (1000 kg/m?). Fol-
lowing Gummer et al.** the TM bending mass is chosen to
be 30% lower than TM shear mass (results indicate that TM
bending resonance is higher than TM shear resonance’”).
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FIG. 4. The plot vs x of the function [Eq. (36)] used for the MET channel
sensitivity in the model.

Based on the calculations in Dallos,24 the value for the
RL stiffness [K,, see Eq. (31)] is chosen to be similar to that
of the OHC stiffness. The spatial variation of the RL stiffness
is not known and is taken to be the same as that of the HB
and OHC stiffness. The viscous modal damping for the three
structural degrees of freedom is also not known. In the
model, the structural damping is supposed to account for the
damping losses associated with the relative motion of the
various components of the OoC. The damping chosen for the
model is a fit to give reasonable BM passive gain relative to
stapes. Dimensions and various angles used are estimated
based on Refs. 24 and 28, the OoC sketch shown in Ref. 33,
and data from Refs. 9 and 34.

We use a reference displacement at the stapes to solve
for the acoustic response. Therefore, only the round window
impedance is included in the model, for the rest of the
middle ear is not required for the results presented in this
study. The round window termination is modeled as a spring
and damper interacting with the fluid in the lower duct. The
fluid geometry is given in Table I and fluid density is taken
as that of water (1000 kg/m?). As a simplification, we use a
uniform cross-section two-duct model with a cross-sectional
area corresponding to a basal location in a guinea pig (the
extension to a nonuniform area is straightforward, but we
have chosen not to study this effect). The fluid model is
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FIG. 5. BM magnitude at different locations in dB normalized to stapes
motion (i.e., BM gain relative to stapes). Dash curves: passive (G.(0)
=0 S/m?) and solid curves: active (G(0)=4.19X 10° S/m?). Locations are
(from left to right). 11.75, 10.75, 9.75, 8.75, 7.75, 6.75, and 5.75 mm.
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FIG. 6. BM phase at different locations in cycles (27 rad). Dash curves:
Passive (G;(O):O S/m?) and solid curves: Active (Gi(0)=4.19
X 10° S/m?). Locations are (from left to right) 11.75, 10.75, 9.75, 8.75,
7.75, 6.75, and 5.75 mm.

considered an approximation to the three-dimensional fluid
effects. In order to model the true fluid geometry, one would
have to build an intricate model of the sulcus and the sub-
tectorial membrane spaces. Such a model would be compu-
tationally expensive. Our goal is to build the simplest model
that represents the fundamental trends and mechanics of the
passive and active response of the cochlea to acoustic stimu-
lation.

B. Electrical parameters

The resistances and capacitances of the apical and baso-
lateral portion of the OHC are known from measurements
and model estimates.”>® The present model possesses the
1 kHz RC cut-off in OHCs for basal locations. The values
shown for these quantities in Table III assume that there are
100 rows of OHCs per millimeter in a guinea pig.9 The en-
docochlear potential is taken from Ref. 37. Various resis-
tances in the model are chosen based on Ref. 37 although
variation of the resistances along the length is not included.
The longitudinal resistance in the scala tympani represents
longitudinal resistance in the interstitial space in the OoC.
Hence the value of resistance used for that cable is as per the
value used in Ref. 37 for the OoC cable resistance. The
electro-mechanical coupling coefficient (e3) along the co-
chlea is estimated from Ref. 38.
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FIG. 7. Dotted lines with markers: Normalized guinea pig data from Cooper
(Ref. 39). Thick lines: Theoretical prediction for BM magnitude in decibel
at 6 mm for different levels of activity [100% activity is equivalent to a
conductance slope of G.(0)=4.19 X 10° S/m?]. Magnitudes are normalized
with respect to maximum passive response.
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FIG. 8. Dotted lines with markers: Guinea pig data from Cooper (Ref. 39).
Thick lines: BM phase in cycles (27 rad) at 6 mm for different levels of
activity [100% activity is equivalent to a conductance slope of G.(0)
=4.19X 10° S/m?].

The MET sensitivity (i.e., the relation between the HB
rotation to the change in HB conductance) is kept as a free
variable in the model. Having zero MET sensitivity is
roughly equivalent to a passive cochlea. Increasing MET
sensitivity increases the gain in the model. As expected, the
model depends nonlinearly (and strongly) on the MET sen-
sitivity. Indeed, if the MET sensitivity is increased beyond a
critical limit, the model response becomes unstable. We
found that different regions on the BM have different maxi-
mum values of the MET sensitivity such that the global re-
sponse was stable. A polynomial-exponential dependence
was used for the variation of the MET sensitivity in the
model,

Gl(x) = GL0)(= 10°%* + 5.9 X 10°x% - 109x + 1.0)e™ "%,
(36)

where x is in meters. Figure 4 shows the function G(ll(x)
given in Eq. (36) plotted against x. This dependence was
found from numerical experimentation and comparison of
predictions with experiments. The maximum value for G‘II(O)
at which the response of the model is stable is 4.19
X 10° S/m?. Our empirically determined spatial variation
for the MET channel sensitivity is used throughout the
study. The entire spatial pattern for the MET sensitivity is
scaled by the multiplying factor G'(0) to alter the activity
level in the model. An analysis of whether this yields
physiologically reasonable transducer currents is pre-
sented in Sec. IV D.

IV. RESULTS

The finite element model is solved for unit stapes dis-
placement input which represents the acoustic input. A mesh
discretization of 1041 nodes along x direction and 41 nodes
along z direction was used for the model. The convergence
and sensitivity to the discretization are discussed in Ref. 20.
All results presented in this section are with respect to the
stapes input and use three symmetric fluid modes and a feed-
forward distance of 5 um. To alter the activity level we
change the maximum MET channel sensitivity (G;(O)) while
leaving all other parameters constant. It is arguable whether
reducing the MET sensitivity is equivalent to reduction in
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FIG. 9. Dash lines: Normalized guinea pig data from deBoer (Ref. 40);
higher gains correspond to lower dB SPLs. Solid lines: Theoretical predic-
tion for BM magnitude in decibels at 6 mm for different levels of activity
[100% activity is equivalent to a conductance slope of G.(0)=4.19
X 10° S/m?]. Higher gains correspond to higher conductance slope. Magni-
tudes are normalized with respect to maximum passive response.

activity level. The other parameter controlling activity, €3, is
not expected to change significantly over the small variation
in transmembrane potential (<15 mV, see Ref. 2) seen in
vivo. At higher acoustic levels the HB conductance would
start saturating much earlier than €; (if it does saturate at all).
Therefore we approximate the higher sound input level by a
lower MET sensitivity in the model. Naturally this is not
strictly correct as we are ignoring nonlinearities in this
model. In the results presented, G:l(O):O S/m? represents a
passive case while G(0)=4.19X10° S/m? represents the
fully active case [see Sec. III B and Eq. (36)]. The following
shows the model’s response predictions to acoustic input at
varying locations, varying activity levels, response to im-
pulse input, frequency glides exhibited by the model, and the
BM motion relative to the ST potential (magnitude and
phase). We start with the frequency response of the model at
different locations along the BM.

A. Frequency response
1. Different locations along the BM

Figures 5 and 6 show magnitude and phase, respectively,
of the BM frequency response referenced to stapes motion at
different locations for high activity and no activity (passive
model). The model exhibits familiar tuning curves from base
to apex. The response shifts to lower frequencies by about
half an octave when activity is lowered and amplitude drops
by about 35 dB from active to passive for basal locations.

2. Different activity levels

Figures 7 and 8 show magnitude and phase, respectively,
at x=6 mm for different activity levels overlapped with ex-
perimental results from Cooper [Fig. 1(a) in Ref. 39]. Fig-
ures 9 and 10 show the same model results overlapped with
experimental results from deBoer and Nuttall.*’ In the mag-
nitude plots, the BM gain with respect to stapes is normal-
ized to the maximum passive/dead response. At frequencies
lower than the best frequency, the model response (either
phase or amplitude) is insensitive to alterations in the level
of activity, consistent with experimental observations. The
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FIG. 10. Dash lines: Guinea pig data from deBoer (Ref. 40) (data supplied
by E. deBoer). Thick lines: BM phase in cycles (27 rad) at 6 mm for dif-
ferent levels of activity [100% activity is equivalent to a conductance slope
of G1(0)=4.19X 10° S/m?].

close match between the model prediction and the experi-
mental data for the frequency dependence of the BM gain is
evident in Figs. 7 and 9. In comparing the two magnitude
plots (Figs. 7 and 9), the variability in the experimental data
should be noted. For example, the relative gain from 100 to
70 dB SPL is around 11 dB for data from Cooper> while the
relative gain is around 17 dB for data from deBoer and
Nuttall.** The model predicts a relative gain of approxi-
mately 35 dB from the passive state [represented by G;(O)
=0 in the model] to the state with maximum activity. A simi-
lar relative gain is also seen in experiments as we transition
from high intensity acoustic input (where the effect of active
force generation in the cochlea is expected to be minor) to
low intensity acoustic input (where the cochlea is at its most
sensitive). The characteristic frequency (CF) of the location
also shifts by around half an octave in both the model and
the experiments with the reduction in activity, which is em-
bodied by a lower MET sensitivity in the model and in-
creased acoustic sound input level in the experiments. The
phase comparisons in Figs. 8 and 10 too show a close match
between the experiments and the model, although the passive
response of the model does not accumulate as much phase
lag as is seen in experiments at high sound levels.
Magnitude predictions of the model are sharper than the
experimental values (i.e., Q,, dB for the model is higher than
the experiment). The sharpness of response varies among
experiments and does depend on processing of the data
somewhat (as is evident from Figs. 7 and 9). Even including
such experiment-to-experiment variability, the model exhib-
its a higher Q, factor than seen in a typical experiment. This
sharp response also results in a longer impulse response as
shown in Sec. III B. We speculate that the main reason for
this discrepancy is the lack of longitudinal structural cou-
pling along the BM and the TM in the model. Although we
have not directly compared absolute gains, our model pre-
dicts the passive response [G'(0)=0 S/m?] to be around
10 dB higher than both the results in Refs. 39 and 40. The
passive gain of the model is around 33 dB (see Fig. 5). It
should be noted that the magnitude observed in experiments
depends on the location of the bead on the BM.” Passive
gain as high as 40 dB has been measured in experiments
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FIG. 11. Experimental results for the guinea pig BM gain envelope at the
outer pillar (OP) location and the second (middle) row OHC location from
Ref. 41. The thick lines represent the active response while thin lines rep-
resent the passive response. Notice that the maximum passive response de-
pends on the radial location where it is measured.

(results reproduced in Fig. 11). Envelopes of guinea-pig BM
response data from Ref. 41 for acoustic levels varying from 8
to 100 dB SPL at two different radial locations are shown in
Fig. 11 to demonstrate the spatial variability of the BM re-
sponse. As Fig. 11 shows, the measured passive gain of the
BM is as high as 40 dB when measured near the middle
OHC location but is only 30 dB when measured at an outer
pillar location.

B. Impulse response

The impulse response of the model was obtained by first
simulating the model at different frequencies (100 Hz to
20 kHz in 100 Hz steps) and then applying the inverse Fou-
rier transform at a given location. Figure 12 shows the im-
pulse response of the model for an active and a passive case

GJ(0)=4.19x 10° S/m? (20 dB SPL)

—_

1
a

G1(0)=0 S/m? (100 dB SPL)

0 0.2 0.4 0.6 0.8 1
Time (msec)

FIG. 12. Normalized model predictions of the BM impulse response at
6 mm for a highly active and a passive case. Active case corresponds
roughly to gain seen at 20 dB SPL, while passive case corresponds to gain
seen at 100 dB SPL or in a dead cochlea. The thin dashed line in the top
panel is the 100 dB SPL result superimposed to highlight the near invariance
of the zero crossings of the response.
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FIG. 13. Normalized experimental BM impulse response as shown in Ref.
40. Acoustic levels for the two plots are 20 and 100 dB SPL (dead cochlea).
The thin dashed line in the top panel is the 100 dB SPL result superimposed
to highlight the near invariance of the zero crossings of the response.

(roughly corresponding to a 20 and a 100 dB SPL case as per
Fig. 9) and Fig. 13 shows the experimentally derived impulse
response as seen by Ref. 40 in a guinea pig. The passive
response of the model compares well with the experiment
but the active response shows oscillations that continue on
up to 3 ms (the figure shows response only up to 1 ms to aid
comparison between model and experiment). This would be
expected as the model has a sharper frequency response than
the experimental data. As in the experimental data (e.g., Ref.
40 and in the theoretical study by Ref. 42), the model also
shows the same zero crossings of the response for the initial
few cycles (indicated by the passive response superimposed
as thin dashed line over the active response). The model does
not exhibit any ringing behavior often seen in experimental
data® and also reproduced by nonlinear models.”® This sug-
gests that ringing could be primarily due to nonlinear effects
in the cochlea.

Figure 14 shows the frequency glide for the active im-
pulse response shown in Fig. 12. The glide represents the
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FIG. 14. Frequency glide at 6 mm for the most active case (G;(O)=4.19
X 10° S/m?) which roughly corresponds to a 20 dB SPL acoustic input as
per Fig. 9 for the 17 kHz CF location.
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FIG. 15. BM response magnitude at 6 mm in decibels with respect to stapes
motion for active [thick lines, G1(0)=4.19X 10° S/m?] and passive case
[thin line, G(II(O):O S/m?], with and without longitudinal cables. The pas-
sive curves virtually overlap and so only one of them is plotted.

instantaneous frequency at a given time of the impulse re-
sponse. The instantaneous frequency is much lower than the
CF of the location at the start of the impulse response but
grows rapidly to reach the CF. This result is very similar to
the glides observed experimentally (e.g., Refs. 43 and 44).

C. Removal of cables

One interesting test that can be done using the model is
to evaluate the importance of current conduction along the
length of the cochlea to the BM amplification. To run this
test we disabled the longitudinal cables and solved for the
system response to acoustic input.

Figure 15 shows the absence of the cables has a measur-
able impact on cochlear amplification when activity is high.
The effect is negligible when the model is passive. There is a
loss in amplification of around 10 to 15 dB when cables are
removed. The model results imply that current conduction
along the length of the cochlea also plays a role in active
amplification in the cochlea.

D. Potentials and currents

We have shown so far that the mechanical response of
the BM compares favorably with experimental results. The
validity of the model results depends on whether the voltages
in the different scalae and the currents predicted by the
model are within certain reasonable limits. Voltages or cur-
rents too large or too small compared to experimentally mea-
sured quantities would indicate possible shortcomings of the
model. This model has been constructed with an aim to test
efficacy of OHC forcing at high frequencies. The model pro-
duces high amplification at the base like in experiments us-
ing only active somatic forcing from OHCs. We therefore
report the model predictions at a basal location and compare
those currents and voltages with experimental values. Since
the model is linear, the model predictions should be com-
pared with very low level acoustic data. We use a BM dis-
placement of 0.5 nm as a reference for stating the voltages
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and currents assuming that the cochlear response shows a
linear input-output relation up to around 0.5 nm BM dis-
placement (see Fig. 3 in Ref. 45). At the 17 kHz best place,
data from Ref. 41 suggest that a 10 dB SPL acoustic input
will give a 0.5 nm BM response while that from Ref. 39
suggest that a 30 dB SPL acoustic input is needed to achieve
the same. A 0.5 nm displacement of the BM is therefore
considered to roughly correspond to a 20 dB SPL sound in-
put.

With the highest value of MET sensitivity [G)(0)
=4.19%10°S/m?, or at x=6mm, G.(0.6)=0.91
X 10° S/m?] the model predicts a transducer current of
1.56 nA and a transmembrane potential of 0.62 mV for
0.5 nm BM displacement at the 17 kHz best place (x
=6 mm). Corresponding predicted maximum displacements
for HBs and OHCs at x=6 mm are 2.5 and 3.5 nm respec-
tively, per nm of BM displacement. The maximum predicted
active force from one OHC on the BM at x=6 mm is
0.12 nN/nm of BM displacement. Recent estimates for
transducer currents in gerbils are available in Ref. 12. The
maximum current measured by He et al. '2 at a basal location
in a hemicochlea preparation was around 2.5 nA. According
to corrections presented in Ref. 13 for reduced endocochlear
potential, reduced body temperature of the animal, and dif-
ferences in endolymphatic cations, the current in vivo is ex-
pected to be around four times higher than what was ob-
served in Ref. 12. This gives us an estimate of 10 nA for the
maximum transducer current. A review by Robles et al.®
indicates that typically transduction channels are saturated at
100 dB SPL sound input (as inferred from the linear growth
in BM response beyond 100 dB SPL). Guinea pig data from
Refs. 41 and 39 suggest that at 100 dB SPL acoustic input,
the BM displacement is less than 20 nm. Making a linear
approximation of the transducer current to BM displacement
relation yields a sensitivity of 0.5 nA/nm of BM displace-
ment. This is an extremely conservative estimate since the
MET sensitivity is expected to be highest (or close to its
highest value) near the resting state and greatly reduced as
the channels saturate.” The transducer current sensitivity
therefore is likely to be much higher than 0.5 nA/nm. This
model for the most sensitive case at the 6 mm site (the
17 kHz best place), predicts a transducer current of
3.12 nA/nm of BM displacement, which is around six times
higher than the 0.5 nA/nm lower bound estimated earlier. To
summarize, for the most sensitive model, our predictions of
HB currents (1.56 nA at =20 dB SPL) are lower than the
maximum values given in the literature.

The ST voltage

In an interesting experiment, Fridberger et al.*® mea-

sured OoC potentials in response to acoustic stimulation.
They observed that ST voltage and BM velocity profiles are
very similar in acoustic stimulation and the phase difference
between ST and BM has a sharp increase near the best place.
We compare our model predictions of the ST voltage with
the experimental data of Fridberger et al. (2004). The loca-
tion chosen is x=5.85 mm, which has a CF of 17.4 kHz, the
same as the CF of the location in the experiment of Ref. 46.
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FIG. 16. Model prediction of the magnitudes of the BM displacement and
ST voltage at 75% activity [G1(0)=3.14 X 10° S/m?] normalized to their
respective maximum levels, plotted vs frequency of the acoustic stimulus.
Location is x=5.85 mm (CF=17.4 kHz).

Experimental results from Ref. 46 show that the BM
displacement and OoC voltage have nearly the same fre-
quency dependence when normalized to their maximum re-
sponse at the CF (experimental results for magnitude not
reproduced here). For the most active case [i.e., when the
MET sensitivity is maximum G(ll(0)=4.19>< 10° S/m?], our
model predicts that the BM displacement is much more
sharply tuned than the ST voltage. When a lower level of
activity (as embodied by a lower MET sensitivity) is used the
normalized profiles of ST voltage and BM displacement
match each other more closely as in the experiments (see
model prediction for 75% activity shown in Fig. 16). In
terms of absolute magnitude, the model predicts 0.17 mV for
I nm of BM displacement (0.24 mV rms) for the lower
MET sensitivity [G}(0)=3.14X 10° S/m?, or 75% activity],
while Ref. 46 shows around 0.15 mV rms ST potential when
BM displacement is 1 nm at 40 dB SPL. Model results for
the phase difference between BM displacement and ST volt-
age (Fig. 17) are in good agreement with experimental mea-
surements from Ref. 46. The phase difference is nearly con-
stant until near the CF where it jumps over 300° for the most
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FIG. 17. Phase difference between BM displacement and ST voltage plotted
vs frequency of acoustic stimulus for different activity levels [100% activity
is equivalent to a conductance slope of G;(0)=4.19>< 10° S/m?]. Location
is x=5.85 mm (CF=17.4 kHz both in experiment and model). Experimen-
tal data from Ref. 46.
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FIG. 18. Gain of the BM displacement compared for different: (a) OHC
electromechanical coupling coefficient (e;), (b) feed-forward distance, (c)
OHC stiffness (K.), (d) HB stiffness (K,;), (€) number of fluid modes, and
(f) HB angle (angle B, see Fig. 3). Location is x=6 mm (CF=17 kHz),
G1(0)=3.98X10° S/m? or 95% active.

active case. As was observed by Ref. 46, the jump does not
increase in a monotonic manner with increasing acoustic
level.

The results from Ref. 46 were suggested to be in support
of a theory on OHC somatic motility proposed by Dallos and
Evans.*® The Dallos-Evans theory is that OHC somatic mo-
tility is driven not by fluctuations in the transmembrane volt-
age, but by fluctuations in the extracellular voltage. Our
model has OHC somatic motility driven by fluctuations in
the transmembrane voltage and yet the model predicts results
similar to those seen in Ref. 46. The use of data from Ref. 46
in favor of the Dallos—Evans theory is therefore question-
able.

V. PARAMETER SENSITIVITY

In the following, we investigate the effect of varying a
few of the key parameters in the model that are expected to
influence the BM motion significantly. The sensitivity of the
model to the MET conductance is evident from the results
presented in the preceding results section. In Fig. 18 we
show the change in the model response when small changes
are made in HB stiffness (K,;), OHC stiffness (K,.), OHC
electromechanical coupling coefficient (&3), HB orientation
in the cochlea (angle B), number of fluid modes, and the
feed-forward distance. The conductance slope was set at
95% of the maximum value for all plots in Fig. 18 (G.(0)
=3.98% 10° S/m?) to avoid the model transitioning into an
unstable region.

A. Electromechanical coupling

The model exhibits higher cochlear amplification for a
higher electromechanical coupling coefficient [Fig. 18(a)].
The model response is sensitive to this parameter with over
5 dB change in BM gain when the electromechanical cou-
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pling parameter is changed by 10%. A higher electrome-
chanical coupling coefficient implies higher force generation
by OHCs so this result is expected.

B. Feed-forward distance

Unlike the model developed by Lim and Steele,” this
model is not highly sensitive to the forward inclination angle
of the OHCs [Fig. 18(b)]. Lim and Steele” proposed that the
forward inclination of OHCs plays a significant role in co-
chlear tuning and amplification. They use a gain factor to
account for the feed-forward effect. In this model, the effect
of the forward inclination of OHCs is negligible. Nonethe-
less we cannot rule out the possibility that if the pressure
forcing on the TM is accurately modeled, it might show that
effect of feed-forward is larger than what is seen here. Fur-
thermore, a different selection of parameters (values and
functional dependence) and the inclusion of longitudinal
structural coupling may influence this conclusion.

C. OHC stiffness

Changing OHC stiffness by 10% has a very small effect
on the BM response [Fig. 18(c)]. Increased OHC stiffness
gives a higher gain in the BM response with respect to the
stapes while a lower OHC stiffness yields a smaller BM
response (not discernible in the figure). This is consistent
with the implication in Ref. 4 that increased OHC stiffness
leads to higher cochlear amplification. This result should be
interpreted with caution though. It is likely that other factors
(such as the OHC basolateral capacitance and electrome-
chanical coupling coefficient) were also affected in Ref. 4
along with the OHC stiffness when the current was injected
in the cochlea, so a direct comparison is not possible unless
all affected parameters in the experiment can be identified.

D. HB stiffness

A change in the HB stiffness causes a shift in the char-
acteristic frequency of the location [Fig. 18(d)]. In the model
the HB stiffness dominates stiffness loading on the TM due
to which the resonance mode of the OoC shifts when this
stiffness is altered. This points to a more prominent role for
HBs if HB motility is present.

E. Fluid modes

For the box model of the cochlea, increasing the number
of fluid modes represents the transition from a two-
dimensional cochlear model (one mode) to a three-
dimensional model (more than one mode). However, since
the shape of the cross section in the cochlea is unlike a rect-
angular box, the results shown here should only be taken as
indicative of the behavior possible in a cochlear model with
a more realistic geometry. Figure 18(e) shows the model pre-
diction for magnitude of the BM response with 95% activity
[i.e., G1(0)=3.98X10° S/m?] at x=6 mm with five, three,
and one fluid mode. As the results show, having more fluid
modes influences the rate of amplitude drop after the best
place and also improves active amplification in the model.
The passive cut-off behavior also improves (not shown)
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when higher modes are used and the passive curves shift to
more lower frequencies. However, the passive gain is largely
unaffected by the number of fluid modes.

F. HB angle

To study the role played by the kinematic configuration
used in the model one can simulate the model with small
perturbations to the different angles and lengths of the struc-
tures. The most critical kinematic feature of them is the rela-
tive angle between the HBs and the OHCs. Figure 18(f)
shows BM response when HB angles (B) are changed
slightly keeping the OHC angles («) the same. A very small
change was used since the model is at high activity [G.(0)
=3.98X 10° S/m?] and can be easily made unstable if large
changes in angle are used. If the HB angle is smaller than
OHC angle, the model predicts a higher BM gain. If one
looks at the deformation statically, the upward motion of the
BM would result in larger rotation of the HBs in the excita-
tory direction and therefore would result in more transducer
current and more OHC forcing if the HB angle is smaller
than OHC angle. Having all the HBs “leaned back™ in the
direction of the tallest HB would thus give better BM ampli-
fication.

V1. CONCLUSION

The main purpose of the present paper was to describe
and vet a mathematical model of the cochlea. In this paper,
we have presented a physiologically motivated mechanical-
electrical-fluidic model for predicting the response of the co-
chlea to acoustical stimulus. The model explicitly couples
the mechanical and electrical degrees of freedom through a
piezoelectric model of OHC electromotility and includes the
conduction of electrical energy down the length of the co-
chlea. HB motility is not included in this model. We have
shown that by changing a single parameter, the MET sensi-
tivity, the model captures a wide range of experimentally
observed effects in the cochlea. The model predictions of the
transducer currents, receptor potentials, and mechanical re-
sponse (BM displacement) compare closely to available ex-
perimental data. Under a variation of the model parameters,
we have shown that the qualitative nature of the predictions
do not change dramatically, although the details of the re-
sponse certainly do. We do not claim that the model gives a
complete picture of cochlea. Key simplifications include the
linearization of all response variables about their operating
points, and the simplification of the fluid geometry. We do
claim to have made progress on describing how electromo-
tile processes might work in the cochlea, especially in the
basal portion. The model brings to light the following two
important points in cochlear mechanics:

1. Modes of vibration of the OoC: What is thought of as the
resonance of the BM should be interpreted as the local
resonance of the OoC system. Our simplified kinematical
approximation to the OoC system suggests, as does ex-
perimental work,32 that structures of the OoC other than
the BM, especially the TM, play a prominent role in the
cochlea. Observations of a notch in the BM frequency
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response to bipolar stimulation® are indicative of a reso-
nance in the OoC and give further credence to this asser-
tion.

2. Intimate link between the electrical currents/voltages and
OoC micromechanics: The elements in the OoC together
with the electrical environment form a complex feedback
system. To accurately model the feedback force arising
from the OHCs or HBs it is essential to have all the indi-
vidual elements modeled in the system. In addition to
providing for a predictive model, the availability of cur-
rent and voltage responses provide additional data to
verify the validity of the model.

It is emphasized here that the highest RC-cutoff fre-
quency is around a 1000 Hz for the basal cells in the model.
The model predictions for the forces generated by OHCs, the
receptor potential, the OoC potential (equivalent to the ST
potential in our model), and the transducer currents all fall
below maximum measured values. Hence the model devel-
oped herein shows how an electromechanical system can in-
teract to overcome filtering of the transmembrane potential
by the membrane capacitance. The MET sensitivity (prob-
ably most reliably quantified experimentally in situ by the
BM displacement to transducer current measurement as HB
motion is difficult to measure in that setting) used in the
model is likely higher than the sensitivity in vivo. As the
results in Sec. V indicate, the model response is sensitive to
parameters and a perhaps further optimization of the param-
eters could lead to a lower estimate of the maximum MET
sensitivity. We conjecture here that it is quite possible that a
higher MET sensitivity is needed in the present model to
overcome the lack of HB motility in the model. The HBs are
of course ideally situated to aide in channel opening and
thereby affecting the conductance of the channels. Further
experimental and theoretical work is needed to validate such
a hypothesis. It is therefore claimed that HB forcing, if
present, acts in conjunction with the OHC somatic forcing to
give rise to cochlear amplification as suggested in a recent
finding by Kennedy et al.’’
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