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 Forming groups with 4x4 matrices
 J. R. HARRIS

 The three Pauli matrices are normally given [1] as the 2 x 2 matrices:

 0 -i\ , / 1 0 \ and c = I I
 / 0 0-1

 a =
 0 1
 1 0

 b =

 where is the usual complex number imaginary unit.
 These matrices obey the relations a2 = I = b2 = c2 (where / is the

 2x2 identity matrix), as well as the anticommutation relations:

 be = -cb = ia,

 ca = -ac = ib,
 ab = -ba = ic.

 Within the quantities ia, ib and ic, i is a scalar multiplier of the 2 x 2 Pauli
 matrices and, of course, commutes with each of a, b, c.

 It is noted that in complex number theory [2] the general complex
 a -b

 number a + ib (a, b e U) can be given as b a
 In this format, 2x2 matrices form a field that is isomorphic to the set

 l q i and r is
 -l o 4
 0 -1

 of complex numbers. The element / is represented as

 1 the negative unit matrix. This is all well known so far!

 The Pauli matrices can be readily expanded to become a set of three
 4x4 matrices containing only real entries from the set {-1, 0, l}. The /

 within the Pauli b matrix is replaced by | ^ ^
 Rewriting a, b and c as 2 x 2 partitioned matrices:

 a =
 0

 0
 b =

 0
 0

 c =
 0 -1

 We can replace the entries 0; 1; -1; / by the respective 2x2 matrices
 0 0\ I I 0\ I-I 0 \ /0 -l\ . . A A I; I I, giving 4x4 representations: 0 0 0 1  0

 a =

 0 0 10
 0 0 0 1
 10 0 0
 0 10 0/

 b =

 0 0
 0 0
 0 -1
 1 0

 0 1
 -1 0
 0 0
 0 0

 c =

 1 0 0
 0 1 0
 0 0-1
 \ 0 0 0

 0
 0
 0
 -1
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 If i is now represented by

 0 -1
 1 0
 0 0
 0 0

 0 0
 0 0
 0 -1
 1 0

 it is found that i2 gives the

 negative 4x4 unit matrix and all the relations for the Pauli matrices still
 hold. So that

 a' = I = b2 =
 be = -cb = ia
 ca = -ac = ib
 ab = -ba = ic

 [all symbols used

 are 4 x 4 matrices].

 We would like to make the point that there are possibly several
 representations for / (as a 4 x 4 matrix). The one chosen above is a
 'natural' one as it is derived from the general quaternion matrix (discussed
 later). The i matrix chosen commutes with each of a, b and c (as 4 x 4

 matrices). This would be a basic requirement in quantum physics where i is
 used as a field element and commutes with all quantities. This commuting
 property does not necessarily hold for other possible representations for i.

 The elements

 {/, -/, i, -i, a, b, c, -a, -b, -c, ab, -ab, ca, -ca, be, -cb}
 (where -ab = ba, -ca = ac, -be = cb), form a group of order 16. Each
 element is a 4 x 4 matrix. The matrices are each orthogonal. Elements are
 either self-inverse, e.g. a, b, c, or have their negative as their inverse,
 e.g. /, ab.

 The subgroup consisting of {/, -/, i, -i} is normal of order 4.

 We now examine the representation of quaternions as 4 x 4 matrices
 and see how these can be combined with the three Pauli matrices a; b; c.

 The general quaternion is represented as a 4 x 4 matrix [3]

 P -q ~r s
 q p -s r
 r s p -q

 -r q p f
 Normally Hamilton's quaternions are written as p + qi + rj + sk where
 /, j, k are imaginary units and p, q, r, s are real.

 The real part of the quaternion, p, appears on the principal diagonal of
 the matrix (as does the real part of the familiar complex number a + ib in
 the 2 x 2 matrix representation). The quaternions form a division ring?as,
 it will be seen, do the 4 x 4 matrix representations.

 By setting p = 0; q = 1; r = 0; s = 0, we obtain a representation for /.
 By setting p = 0; q = 0; r = 1; s = 0, we obtain j and by setting p = 0;
 q = 0; r = 0; 5 = 1, we obtain k.

 where p, q, r, s e
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 We have now

 i =

 -1
 0
 0
 0

 0
 0
 -1
 0

 j =

 0 0-1
 0 0 0
 1 0 0
 0-10

 k =  0
 0
 0

 It can be verified that all the Hamilton relations among /, j, k hold with
 these matrices:

 i2 = -/

 f = -/
 k2 = -I

 ij = k
 jk = i
 ki = j

 ij = -Ji

 jk = -kj
 hi = -ik

 i,j, k anticommute in pairs in similar fashion to the three Pauli matrices a, b, c.

 We note that /, j, k can be combined with (multiplied with) a, b, c. It
 has already been mentioned that i commutes with each a, b, c but,
 remarkably, the j matrix and the k matrix anticommute with each of a, b, c.

 We now have the relations:

 la = ai

 ib = bi
 ic = ci

 ja = -aj
 jb = -bj
 jc = -cj

 ha = -ak
 kb = -bk
 kc = ?ck

 [From above, we already have ia = be; ib = ca\ ic = ab.]
 By grafting the six matrices: ja, jb, jc, ka, kb, kc and their negatives

 -ja, -jb, -jc, -ka, -kb, -kc onto the 16 elements (as discussed above), we
 obtain 28 elements. By, including j and k themselves, with their negatives -j
 and -k, we obtain exactly 32 elements (exactly double the order of the group
 discussed previously) which will form a group of order 32.

 The set of elements is:

 { /, -/, /, -/, j, -j, k, -k, a, b, c, -a, -b, -c,
 ab, ha, ca, ac, be, cb, ja, -ja, jb, -jb jc, -jc

 ka, -ka, kb, -kb, kc, -kc }

 Associativity of elements holds because all matrices obey this property.
 All elements are self-inverse or have their negative as inverse?the same as
 for the 16 element group above. In fact, the 32 element group has the 16
 element group as a normal subgroup within it. As well as this, the 8 elements
 {/, -/, /, -/, j, -j, k, -k] form another normal subgroup of the 32 element
 one (though it is not a subgroup of the 16 element group).

 The 8 element subgroup is the familiar 'quaternion group'. It should be
 mentioned here that some textbooks, notably [4], present this group in a
 rather indirect way.

 as cited above.

This content downloaded from 130.126.162.126 on Sun, 07 Jan 2018 22:39:42 UTC
All use subject to http://about.jstor.org/terms



 FORMING GROUPS WITH 4x4 MATRICES  429

 On the closure property of the 32 element group, we feel this is an
 excellent exercise, checking that pairs multiplied together give another in the
 set. For example:

 (1) (a) x (ja) = (aj) x (a) = (-ja) x (a)
 = -j(a x a)
 = -jl
 = ~j

 (2) (ab) x (jc) = (ic) x (jc) = i x (cj) x c
 = i x (-jc) x c
 = ~ij x c
 = -k x I
 = -k.

 Some striking results have arisen by combining the 4x4 Pauli
 matrices with the 4 x 4 quaternion units:
 1) All groups formed have order 2N for N = 2, 3, 4, 5. Further to this,

 if Af is an odd power, (23, 25), the group contains all of /, j, k. Whereas
 if N is an even power, (22, 24), the group contains only the / element
 with a, b, c. This shows that the 25 (or 32) element group is an
 extension of the 23 (or 8) element quaternion group.

 2) All the 4 x 4 matrix elements are orthogonal matrices. (The transpose
 of each matrix gives its inverse.)

 3) Any subgroups of a given group are normal (invariant in some textbooks)
 and thereby further groups, such as quotient groups, could be created.

 4) The fact that the five quantities {a, b, c, j, k} anticommute, for any pair
 selected, is significant as this value five occurs with the 5 Dirac
 matrices in quantum physics. Any pair from the 5 Dirac matrices
 anticommute [1].

 5) The fact that j and k each anticommute with a, b, c (and not i) suggests
 a symmetry breaking of the units /, j, k. This is perhaps a surprising
 result as Hamilton's relations between /, j, k are cyclically symmetric.

 References
 1. E. A. Maxwell, Algebraic structure and matrices, Cambridge University

 Press (1965) p. 192.
 2. E. T. Copson, Theory of functions of a complex variable, Oxford

 University Press (1935) pp. 1-5.
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 4. W. Ledermann, Introduction to the theory of finite groups (4th edn.),
 Oliver & Boyd (1961).

 J. R. HARRIS

 6 Willowdene Court, Bembridge P035 5SS
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