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Forming groups with 4 x 4 matrices
J. R. HARRIS
The three Pauli matrices are normally given [1] as the 2 x 2 matrices:
01 0 —-i 10
S B Y I VY

where ‘i’ is the usual complex number imaginary unit.

These matrices obey the relations a> = I = b* = ¢? (where I is the
2 x 2 identity matrix), as well as the anticommutation relations:

bc = -cb = ia,
ca = —ac = ib,
ab = —ba = ic.

Within the quantities ia, ib and ic, i is a scalar multiplier of the 2 x 2 Pauli
matrices and, of course, commutes with each of a, b, c.

It is noted that in complex number theory [2] the general complex

number a + ib (a, b € R) can be given as

In this format, 2 x 2 matrices form a field that is isomorphic to the set

of complex numbers. The element i is represented as ((1) _01 ) and 2 is

0

The Pauli matrices can be readily expanded to become a set of three
4 x 4 matrices containing only real entries from the set {-1, 0, 1}. The i

within the Pauli b matrix is replaced by ( (1) _01

Rewriting a, b and c as 2 x 2 partitioned matrices:

() e k)

We can replace the entnes 0; 1; —=1; i by the respective 2 x 2 matrices

( -1 01 ), the negative unit matrix. This is all well known so far!

00\ 0-1} .. .

( 0 0),(0 1), 0 )(1 0 , giving 4 x 4 representations:
0010 00 01 10 0 O

a=0001. b=00_10~ c=0100
100O0Yf 0 -1 0 0Ff 00 -1 0
0100 1 0 0 0 00 0 -1
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FORMING GROUPS WITH 4 x 4 MATRICES 427

0-100
-, 1 0 0 0. . P
If i is now represented by 00 0 -1 it is found that i* gives the
0010

negative 4 x 4 unit matrix and all the relations for the Pauli matrices still
hold. So that

a2 =1=0p=_¢c=

bc = —cb = ia [all symbols used
ca = —ac = ib are 4 x 4 matrices].
ab = —ba = ic

We would like to make the point that there are possibly several
representations for i (as a 4 x 4 matrix). The one chosen above is a
‘natural’ one as it is derived from the general quaternion matrix (discussed
later). The i matrix chosen commutes with each of a, b and ¢ (as 4 x 4
matrices). This would be a basic requirement in quantum physics where i is
used as a field element and commutes with all quantities. This commuting
property does not necessarily hold for other possible representations for i.

The elements
{I, -1, i, -i, a, b, ¢, —a, -b, —c, ab, —ab, ca, —ca, bc, —cb}

(where —ab = ba, —ca = ac, —bc = cb), form a group of order 16. Each
element is a 4 x 4 matrix. The matrices are each orthogonal. Elements are
either self-inverse, e.g. a, b, ¢, or have their negative as their inverse,
e.g. i, ab.

The subgroup consisting of {I, -1, 1, —i } is normal of order 4.

We now examine the representation of quaternions as 4 x 4 matrices
and see how these can be combined with the three Pauli matrices a; b; c.

The general quaternion is represented as a4 x 4 matrix [3]

p —q -r =s
-s r
ap where p, g, r, s € R.
r s p —q
s —-r q p

Normally Hamilton's quaternions are written as p + gi + rj + sk where
i, j, k are imaginary units and p, g, r, s are real.

The real part of the quaternion, p, appears on the principal diagonal of
the matrix (as does the real part of the familiar complex number a + ib in
the 2 x 2 matrix representation). The quaternions form a division ring—as,
it will be seen, do the 4 x 4 matrix representations.

By setting p=0; g=1; r =0; s = 0, we obtain a representation for i.
By settingp = 0;9g = 0;r = 1;s = 0, we obtain j and by setting p = 0;
qg = 0;r = 0;5s = 1, we obtain k.

This content downloaded from 130.126.162.126 on Sun, 07 Jan 2018 22:39:42 UTC
All use subject to http://about.jstor.org/terms



428 THE MATHEMATICAL GAZETTE

We have now

0 -10 0\ 0 0 -10 00 0 -1
l._lOOO .=0001 k=00—10
“lo 0 0 -1 =110 0 0 01 0 0

0 0 1 0 0 -1 0 O 10 0 O

It can be verified that all the Hamilton relations among i, j, k£ hold with

these matrices:

2=~ ; ij=k; ij=—i ;
PF=-1 ;5 jk=1i; jk=-k ;
k=1 ki=j ; ki=-ik

i,j, k anticommute in pairs in similar fashion to the three Pauli matrices a, b, c.

We note that i, j, k can be combined with (multiplied with) a, b, c. It
has already been mentioned that i commutes with each a, b, ¢ but,
remarkably, the j matrix and the k matrix anticommute with each of a, b, c.
We now have the relations:

ia =a ; ja=-a ; ka = —ak ;
ib=>bi ; jb=-b ; kb = -bk ;
ic =ci ; jc = =¢j ; kc = —ck

[From above, we already have ia bc;ib = ca;ic = ab.]

By grafting the six matrices: ja, jb, jc, ka, kb, k¢ and their negatives
—ja, —jb, —jc, —ka, —kb, —kc onto the 16 elements (as discussed above), we
obtain 28 elements. By, including j and k themselves, with their negatives —j
and —k, we obtain exactly 32 elements (exactly double the order of the group
discussed previously) which will form a group of order 32.

The set of elements is:

{ 1$ _I’ iy _i’ ja _jv kv —ka a, ba c, —a, —b, —C,
ab, ba, ca, ac, bc, cb, ja, -—ja, jb, -—jb jc, -jc
ka, -ka, kb, -kb, kc, -kc }

Associativity of elements holds because all matrices obey this property.
All elements are self-inverse or have their negative as inverse—the same as
for the 16 element group above. In fact, the 32 element group has the 16
element group as a normal subgroup within it. As well as this, the 8 elements
{I, -1, i, —i, j, —j, k, —k} form another normal subgroup of the 32 element
one (though it is not a subgroup of the 16 element group).

The 8 element subgroup is the familiar ‘quaternion group’. It should be
mentioned here that some textbooks, notably [4], present this group in a
rather indirect way.

*

as cited above.
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FORMING GROUPS WITH 4 x 4 MATRICES 429

On the closure property of the 32 element group, we feel this is an

excellent exercise, checking that pairs multiplied together give another in the

set.

ey

2

For example:
(@) x (ja) = () x (@) = (—ja) x (a)
= —j(a x a)
= —jI
=

(ab) x (jc) = (ic) x (jc) =i x (¢) x ¢
=i x (—jc) x ¢
= —ij x ¢*
= -k x1I
= —k.
Some striking results have arisen by combining the 4 x 4 Pauli

matrices with the 4 x 4 quaternion units:

D

2)
3)

4)

5)

All groups formed have order 2" for N = 2, 3, 4, 5. Further to this,
if N is an odd power, (23, 2°), the group contains all of i, j, k. Whereas
if N is an even power, (22, 2*), the group contains only the i element
with a, b, c. This shows that the 2° (or 32) element group is an
extension of the 2 (or 8) element quaternion group.

All the 4 x 4 matrix elements are orthogonal matrices. (The transpose
of each matrix gives its inverse.)

Any subgroups of a given group are normal (invariant in some textbooks)
and thereby further groups, such as quotient groups, could be created.

The fact that the five quantities {a, b, c, j, k} anticommute, for any pair
selected, is significant as this value five occurs with the 5 Dirac
matrices in quantum physics. Any pair from the 5 Dirac matrices
anticommute [1].

The fact that j and k each anticommute with a, b, ¢ (and not i) suggests
a symmetry breaking of the units i, j, k. This is perhaps a surprising
result as Hamilton's relations between i, j, k are cyclically symmetric.
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