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1. Introduction. The solutions of many problems of mathematical physics depend
delicately on the applicability of the classical Helmholtz [1] (also called Stokes [2]-
Helmholtz) decomposition theorem. The applicability of this theorem is extended
here, using a modified form of the solution to Poisson’s equation, from that of the
currently known version, and the theorem is also generalized into an N-dimensional
version.

The theorem is known as the fundamental theorem in vector analysis (Sommerfeld
[3, p. 147]) and states either that every arbitrarily given 3-dimensional vector func-
tion u(x) (subject to some condition of differentiability) can be decomposed into
a curl-free vector plus another divergence-free vector (weak version), or that it can
be decomposed into the gradient of a scalar function plus the curl of another vector
function, i.e.,

ux)=VO0+Vxb (1)

(strong version). The theorem can be proved using the identity Viw = V(V-w)—
V x (V x w) where w(x) satisfies Viw=u. However, such a simple proof, as given
in vector analysis (see, e.g., Lass [4, p. 156], Aris [5, p. 70], or Bowen and Wang [6,
p. 328]), requires u(x) or V -u to be of order 0(|x|_2_‘5), 0 > 0, at infinity when
the region D C R? under consideration is infinite. Various authors have attempted
to avoid or relax such restriction. Phillips [7, p. 186], and Weatherburn [8, p. 74],
used a more complicated application of the solution to Poisson’s equation to relax
the restriction to |u(x)| = 0(|x|_'_‘5), 0 > 0, at infinity. Blumenthal [9] devised
a method of accelerating the convergence of the solution to Poisson’s equation and
proved that every function u(x) € C*°(D) bounded at infinity by O(log|x|) can be
decomposed into a curl-free vector and a divergence-free vector, which are also in
C>(D). Gurtin [10] applied the method to prove that every u(x) € C 0(D uab)n
C'(D - 8D) bounded at infinity by O(|x|™°), & > 0, can be written as V6 + V x b
for some 0(x), b(x) € CI(D — 0D). We also have another line of approach to
this decomposition problem (Nikodym [11], Friedrichs [12], Weyl [13], Bykhovski
and Smirnov [14], and Fujiwara and Morimoto [15]), complementing the classical
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24 TON TRAN-CONG

one just mentioned, that uses functional analysis on those functions of the space
L,, (1 <r<oo). The rth powers of these functions also have to decay at infinity.
Blumenthal’s and Gurtin’s results remain until now the least restrictive of the directly
derived versions of the theorem. For examples of their use and the significance of
the above discussed restriction in elasticity and fluid mechanics, see the works by
Gurtin [10, 16], Millar [17], Hirasaki [18], Aregrebesola and Burley [19], Richardson
and Cornish [20], and Morino [21].

Since the restriction originates from the solution to Poisson’s equation with an
infinite domain, it is expedient to deal with this equation, which is

Vi(x) = w(x), 2)

where y(x) € C 0(D) , DC RY , is an arbitrarily given function. Its classical solution
is (Kellogg [22] for N = 3, Courant and Hilbert [23] for N > 3)

_ -T(N)2) 1
00 = g [ s, N2, 3)

and is applicable to an infinite region D C RY only when y(x) = 0(|x|_2“5)

J > 0, at infinity. This seemingly minor restriction is the cause for the restriction in
Helmholtz’s theorem and is also an obstacle to the solution of many other problems in
mathematical physics (e.g., the second example of Sec. 5). This makes the relaxation
of the restriction a worthwhile effort with ramifications in mathematical physics.

As Blumenthal changed the weighting factor in the integral of Eq. (3) from 1/|y—x|
to (1/]y—x|—1/]y|]) so that yw(x) needs only be of order 0(|x|_l_‘s) at infinity, we
can extend his process to higher-order terms so that w(x) now needs to be bounded
at infinity only by O(|x|*), a a constant. (Obviously, we can subsequently assume
a > 0 to be an integer /.) D can be simply or multiply connected. The extension
is similar to the technique used in analysis to prove Carleman’s inequalities (see
Schechter and Simon [24], Amrein, Berthier, and Georcescu [25], and Jerison and
Kenig [26]). The result here is not as general as that given in Hormander’s book [27,
Corollaries 10.7.10 and 10.8.2], which does not impose any limit on the growth rate
of w(x) and only requires D to be P-convex for singular support, but, owing to its
direct derivation, should be appealing.

The solution to Poisson’s equation so directly derived gives a less restricted, strong
version of Helmholtz’s theorem so that u(x) now needs to be bounded at infinity
only by O(|x|[), [ a constant (Theorem 2). D can be multiply connected and
may have internal surfaces. The generalisation of Helmholtz’s theorem into an N-
dimensional version is realised using the calculus of differential forms. It appears that
it has not been previously given as an analogue of the 3-dimensional version. (The
previous tensorial work by Fosdick [28] requires that |u(x)| = 0(|x|—2_5) , 0>0,
at infinity and does not correspond directly to the 3-dimensional results.) Although
the solution to Poisson’s equation can easily give the weak version of the theorem,
the strong version cannot be simply derived from the weak one via the Converse of
Poincaré’s Lemma unless D is topologically very simple, such as being star-shaped,
which is a very restrictive situation.

b
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HELMHOLTZ’S DECOMPOSITION THEOREM AND POISSON’S EQUATION 25

Three examples are then given in Sec. 5. The first enlarges the validity of the
Papkovich-Neuber general solution to Lamé’s equation in linear elasticity by relaxing
the requirement that |u(x)| = 0(|x|“5), 0 > 0, at infinity (e.g., Gurtin [10, 16] and
Millar [17]). The second solves the Legendre equation. The third shows that every
harmonic function can be expressed as the divergence of another harmonic vector
function; the expression has been found useful in continuum mechanics (e.g., see
Tran-Cong [29] and Tran-Cong and Blake [30]).

The layout of this paper is to first establish the solution to the N-dimensional
Poisson’s equation with an infinite domain. Helmholtz’s theorem is then given with
its 3-dimensional corollary. The application finally follows.

2. Definitions and notations. This paper deals with an N-dimensional space, N >
3. A letter will denote a scalar quantity when it is non-bold and an N-dimensional
vector or tensor when it is latin and boldface. The letters i, j, k, [, m, n denote

nonnegative integers. The symbol K denotes the set K = {1,2,..., N—-1, N},
[i1=[1,2,...,1,...,N]e K" an increasing (N — 1)-tuple with / absent from
the tuple, and [[j]1 =[1,2, ..., 0, ey Jyeers N] € k"% an increasing (N — 2)-

tuple with both i and j absent (i < j always). The symbol R = (-0, oo) denotes
the set of all real numbers, S(a, p) = {x||x —a| < p} an open sphere centered on a
having radius p >0, and S(a, p) = {x||x—a| < p} its corresponding closed sphere.

The permutation symbol di'lf;::ﬁlv has the value 1, —1, or 0 depending on
whether (i, i,, ..., iy) is an even, odd, or not a permutation of (1,2,..., N).
The Kronecker symbol 5{ has the value of unity when i = j and zero other-
wise. V  and dx denote €9/9x, + e,0/0x, + -+ e,0/0x, and e dx, +

e,dx, +---+eydx, , respectively, where (e,,e,,...,e,) are the basis of the co-
ordinate system (x,, X,, ..., Xy). When no confusion can arise, the subscript of
V may be omitted. With a k-tuple i = (i, i), ..., i,) attached to x, we define

dx;, =dx; e, Ndx, & Ao ANdXx; 5 =dx, dx; - a'x € ne, A- /\eik,where A
denotes the exterlor product (Bowen and Wang [6 p. 303])

Let f(u) be a scalar function of a vectorial variable w = (u,, u,, ..., uy). Its
differential d* f(a, b), where k >0, is a function defined by
k
k 0" f(u)
dfa,b)= Y ( ) bbb, k>0
1<i) iy, i <N Ou; uy - Qu, J

When c¢(x) is a tensor, dc denotes its exterior derivative (Bowen and Wang [6, p.
303]); this should not be confused with the notation for the differentials.
The constant x and functions A(x) and g(i,y, —x), i > 0, denote

x = T(N/2)[(N - 2)2z"*™" (4)
and
hx)=k/x|" 7%,  N>3, (5)
and A
gliy, =)= hy=x) = 3 Zrd*hy, ), ©)
k=0
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26 TON TRAN-CONG

respectively, where I'(x) is the gamma function with argument x .

DEFINITION 1. A domain is an open set, any two of whose points can be joined
by a polygonal line, of a finite number of segments, all of whose points belong to the
set (Kellogg [22, p. 93]). A region D is either a domain, or a domain together with
some or all of its boundary points (Kellogg [22, p. 93]). The term regular region is
defined as in Kellogg’s book [22].

DEFINITION 2. A function f(x) defined in D satisfies a Hélder condition with
exponent a (a > 0) at a point a if there are two positive constants c(a) and M(a)
such that |f(x) — f(a)| < M(a)|x —a|* for any x such that |x —a| < c(a).

0D and D-0D denote the boundary and the interior of D, respectively. f(x) €
C"(D) denotes that the function f(x) is defined, continuous together with all of its
partial derivatives of order up to and including n (n > 0) in the region D, f(x) €
C"*(D) denotes that f(x) € C"(D) and all of its nth order partial derivatives
satisfy the Holder condition with exponent « in D.

Every kth-order (0 < k < N) antisymmetric tensor b(x), which changes sign
when any two of its indices are interchanged, corresponds to a differential k-form
b(x) defined by (Bowen and Wang [6, p. 303])

b(x) = > b, .. dx e Ndx e A---Ndx e,

. . . lllz...’k
1<i | <ip<<ii <N

= Z . biliZ'“ikdxiliZ'”ik'
1<i << <y <N
The symbol (b)i.i2~~ik ,
of the antisymmetric tensor and the differential k-form b.
DEFINITION 3. A differential k-form b (1 < k < N) is exact if it is equal to the
differential of another differential (k — 1)-form c, i.e., b=dc.

1<i <i,<-<i, <N, denotes the component b, by,
1

3. Solution to Poisson equation in an infinite domain. We first note that there is a
constant ¢ > 0 such that the function u(x) defined by
1 forx>1%,

1
u(x) = 0 forx<-—3, (7)

X
c/ exp(l/(4t2 —1))dt otherwise
—1/2

isin C®(R). If w(x) € C"*(D), 0 < a < 1, then we have [u(x)y(x)] € C"*(D).
We next consider the Laplacian of the (k + 2)th differential of f(y):

2 ka2 ~ o> [ 8@ 1y, x))]
Vx(d f(y5 X)) - i,IZG:K (axi)Z |:xj ayj

2, jk+1 3, jk+1
Ly PET6.0) g 9T, X)

i,jeK dx,;0y; i Sex 9y, 0x,0x,
N a2, jk+l N
(9 (d f(Y7 X)) 8 2 k+1
= i d ’ '
23 Sy Ly v, )
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HELMHOLTZ’'S DECOMPOSITION THEOREM AND POISSON’S EQUATION 27

i\

6

1P, iy iy ey iy SN

k+1
9 fy) i X. X X, )
oy, ay 8y,.k | ox, hh leat

k+1
9 [(k +1) (8 g f(a) )xi X, - xlkél"‘“]
1<0, 0y by ey i SN Vi Yi 9%, Vi b

= (k+ 1)Vy(d" f(y, x)).

o5

QD

Hence

2z

Vd“‘f X)), (8)

QDlQJ

Vidf(y, %) = 2(k + DV f(y, x Z

and we have

LEMMA 1. Let A(y) = x/lle—z. We have
V(@ h(y,x)) =0 for |y| # 0 and k > 0. (9)

Proof. Direct differentiation proves the case for kK = 0 and k = 1. We next note
that

k
2, gk 0 2 K
y ) Z lk<N8yilayi2..'6y[k y |y|N 2 1770 Iy

1<i) iy, [, <
for |y| # 0

for all £k > 0. Therefore Eq. (8) gives

0
xia_y(vidk+lh(y, x)) s

i=1 i

M=

Vy(dh(y, x)) =
whose right-hand side vanishes for kK = 0. An induction is then applied on this to
prove Eq. (9) for all values of k> 1.

LEMMA 2. Let the function y(x) € CO(D U dD) be given for the bounded, regular
region D C RY . The potential function

— _x v (y)
b(x) = /D L) (10)

isin C 1(D U dD) and satisfies

V60 == [ ywv, (F)IKIN—Z) d(y) (11)
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28 TON TRAN-CONG

in DUAD. If we further have y(x) € C>'“(D — D) then ¢(x) € C*(D—dD) and
#(x) satisfies in D — 9D

0%p(x) o] . 9* 1
9%,0%, = Nkv/(x) — K lim b Stx.o) W(y)axkaxj (|y - x[N_?') dz(y),
1<k,j<N, (12
and
Ve =y. (13)
For every S(q, n) C (D —dD) and an integer n > 0 it satisfies
p(x) € C"(S(a, m) if w(x) € C"'(S(a, n)). (14)

This is an N-dimensional version of the results given in the books by Schmidt [31]
or Kellogg [22]; for its proof see Courant and Hilbert [23], Gilbarg and Trudinger
[32], Mikhlin [33], Calderon and Zygmund [34], and Taibleson [35].

We are now ready to consider the first theorem of this paper.

TueoreM 1. Let Dc RY bea regular region and let
w(x) e C'(DudD)n C**(D - dD)
be bounded at infinity by 0(|x|1) for some constant /. The potential function
o(x) = - /D{h(y =X)L —u(lyl = 2)1+ gl +2,y, —x)u(ly| - 2)}w(y)dz(y) (15)
isin C'(DUAD) and satisfies
V,6(x) = —/D vV, {Ay—x)[1-u(ly|-2)]+g(+2,y, —x)u(ly| - 2)} dz(y) (16)
in DUAD. It is also twice differentiable and satisfies in D — 9D

82 511 62

prox, PN = NI [ oY Wy, O -~ uli = 2)

+g(+2,y, —xu(lyl -2)}dt(y) 1<ij<N,
(17)

and ,
Vig=vy. (18)
For every S(q, ) C (D — 8D) and any integer n > 0 it satisfies

$(x) € C"*(S(a, m) if w(x) e C""'(S(a, ). (19)
Proof. Let D, = DnS(0,3), D, = D-S(0, 1), and y(x) = y,(X) + w,(x)
where w,(x) = [1 — u(|x| — 2)]w(x), ¥,(x) = u(|x| = 2)ly(x), and ¥,(x), ¥,(X) €
c®buaD)nC®*(D-0aD).
We note that d*h(y, —x) € C°(D> x R") forall k >0, that y,(x) =0 outside
D, nS(0,5/2), and that y,(x) =0 outside D, — S(0, 3/2). We then have ¢(x) =
#,(x) + ¢,(x) where

¢.(X)=—/D h(y —x)y,(y)dz(y) and ¢2(X)=—/Dg(1+2,y,—X)w2(y)dT(y)-

2
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HELMHOLTZ’S DECOMPOSITION THEOREM AND POISSON’S EQUATION 29

Since D, is finite, only ¢,(x) needs to be considered. Taylor’s theorem gives
gl +2,y,-x) = (d"h(y — tx, —x))/(I + 3)! where 0 <t < 1. As |y| — oo,
gl+2,y,-x) = 0(|y|_N_1_') and y(y) = O(|y|[); therefore, the integrand is of
order O(ly| ") at infinity and ¢,(x) is defined for all x € (D — D).

We have to establish the rules for the first and second derivative of ¢,(x) for all
x € D and also the equality

v /D gl +2,y, —X)w,(y) d1(y) = ¥,(%) (20)

since g(/+2,y, —x) is singular and D, is unbounded. We can either follow the
method in Kellogg’s book [22, pp. 150-156] or apply Harnack’s convergence theorem.
The latter approach is shorter and is adopted here.

Choose an arbitrary point q € (D —9D). As D, overlaps DN S(0, 3/2), there
isan 7> 0 such that at least S(q, ) ¢ D, or S(q, n) C (DNS(0, 3/2)). We then
suppose that w(x) € C""'(S(q, 1)).

We first suppose that S(q, 7) C D,, hence y,(x) € C"*'(S(q, ). Take an
arbitrary point w € S(q, #) and choose a constant 4 > 0 such that S(w, 1) C
S(q, 7). The differentiability of ¢,(x) in S(w, A) will be examined. Write ¢,(x)
as the sum of two integrals, ¢, (x) and ¢,,(x), of y,(x) over S(w, ) and D, —
S(w, 1), respectively. The first,

1+2
—1 k
b=~ [ Thiy=x) -3 (k) @ hy, v ),
S(w,4) k=0
is over a bounded region with a singular kernel caused by |y — | N and is cov-
ered by Lemma 2 and the results of Lemma 1 regarding EI+2 (k)™ 'd*h h(y, —x).
Hence, ¢,,(x) satisfies Egs. (16) to (19) with D replaced by S(w, i) and

{Aly = )[1 — u(lyl = 2)1+ g/ + 2, y, —x)u(ly| — 2)} by g/ +2,y, —x)u(ly| - 2).
In particular, we have
V2, (x) = —V / gl +2,y, —x)w,(y) d1(y)
= —Vx h(y — x)w,(y) dt(y)
S(w,4)

1+2
S(w, 4) (Z k'd h(y ) v, (y)d(y)
1+2
= '//2(?() / (Z k'd h(y ) ( Ydt(y) = Q/[Z(x)_ (21)

Differentiation has been brought under the fourth integral sign since the summation
142

w,(y) Z(k!)_ldkh()’, —x) is infinitely differentiable with respect to x and these
k=0

derivatives are continuous for (x,y) € S(w, 1) x S(w, 1) where the set is compact
(Apostol [36, p. 167]). We also note that ¢,,(x) € CO(DuaD)r‘IC"+2(S(w, A)). The
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30 TON TRAN-CONG

second integral ¢,,(x) is over an unbounded region but with a bounded, infinitely
differentiable kernel and is considered below.
Let {p,} be an unbounded increasing sequence with p, > |q| + n. The function

£ ()= f gl +2,y, —x)w,(y) d1(y) (22)
D,NS(0, p,)—S(w, )

is harmonic for x € S(w, A/2) by Lemma 1. ¢,,(x) can be differentiated under the
integral sign since g(/ + 2, y, —x) is infinitely differentiable with respect to x and
these derivatives are continuous for (x,y) € S(w, 4/2) x (D,UdD,)NS(0, p,) —
S(w, 1)), where the set is compact.

Let x € S(w,A/2) and let m — oo; then p,, also tends to infinity. Since
lg(l +2,y, —x)w,(y)| is bounded for large |y| by M|y|""~' with some M inde-
pendent of (x, y), the sequence of harmonic functions {¢, (x)} converges uniformly
on S(w, A/2) to the limit function ¢,,(x) € C™(S(w, 1/2)) given by

but) == [ a2,y () (23)

By Harnack’s convergence theorem (Kellogg [22, p. 248]), £,,(x) together with all
of its derivatives converge on S(w, A/2) to ¢,,(x) and its respective derivatives and
¢,,(x) is harmonic in S(w, 1/2). Hence

~V,6p(x) = =V, ( lim £,(x)) = - lim (V,&,(x)

— lim Vgl +2,y, —X)w,(y) d1(y)
Mm—0o0 Jp,nS(0, p,,)—S(w,2)

- / Vgl +2,y, —x)w,(y) d(y)., (24)
D,—S(w, 1)

8* 9?2 52
_——aXiaxj¢22(X) = - —axiaxj ('Jl_rgofm()()) = —'31_1330 (mém(x))

Py

= lim gl +2,y, =x)y,(y)dt(y)

m=0o0 J/p.nS0,p,,)-S(w,1) Ox,0x; 2
52
/Dz—S(w,A) Ox,0x; 2
and
~Vi¢p(x) = lim Vagl +2,y, —X)w,(y) d(y)
©JD,nS(0,p,)-S(w,1)
= lim 0=0, (26)

by Eq. (9) and Lemmas 1 and 2. Differentiation has been brought under the integral
sign for the third members of Eqs. (24) and (25) since g(/ + 2),y, —X)y,(y) is
infinitely differentiable with respect to x and these derivatives are continuous for
(x,y) € S(w, A/2) x ((D,uoD,)N S(, p,,) —S(w, 1)) where the set is compact.
Since w is an arbitrary point of S(q, ), it follows that ¢,,(x) is harmonic in
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HELMHOLTZ’S DECOMPOSITION THEOREM AND POISSON’S EQUATION 31

S(q, n). Consequently, ¢,,(x) € C™(S(q, 1)) and the differentiability of ¢,,(x)
determines that of ¢,(x). Finally, since ¢,,(x) is harmonic, Eq. (21) gives

Vi, (X) = Vigy (X) + Vidy, (X) = Vb, (X) = wy(x). (27)

Hence ¢(x) = ¢,(x) + ¢,,(x) + ¢,,(x) satisfies Egs. (16), (17), (18), and (19).
Secondly, we can have a similar but simpler argument when S(q,#n) C (DN
$(0, 3/2)) since @,,(x) = 0 in this case. The theorem has been proved. (It could

also be generalized to state that if y(x) € CO(DUBD) then ¢(x) € C'(DuUdD) with
only some simple change of the proof.)
4. N-dimensional Helmholtz’s decomposition theorem.

LEMMA 3. Let a(x) be a twice differentiable vector function of x. Then the
(N — 2)th order antisymmetric tensor b(x) defined by

. (0a. fPa.
e = () L2
b[’ﬂ (=1 <8xi é)xj) (28)

2 0 j—1
\Y aj'— aj—-V'a= (—1) (db)IZ]N (29)
This is the N-dimensional generalization of V(V -a) — Va=V x (V x a).
Proof. The (N — 2)-form

bx)= Y by n(X)dXg (30)

[ijlek"~?

satisfies

has for its exterior derivative db the (N — 1)-form

-, 0b ob,, - -
_ =199 5N 2000 N
db= 3 (-7 =5+ Y ( — o dxg,
lijlek™? ' lijlek™=? /
Define
BUE—B..EblZ_“;mJA,__N fori<j, B,=0 fori=/, (31)
and note that B, = (- )*(0a, ;/0x;—da,/dx;) forall 1 <i,j<N.Wehave
N 0B;; NX o (0a. da
db = - )+ —J 2% ) dx
— ,};1( ) z::z:: ox, \ox, ox, dxgy,

(32)
which gives Eq. (29).

THEOREM 2. Let D C RY be an infinite regular region and let f(x) € CO(D uoabD)N

CO"’(D — 0D) be a vector function bounded at infinity by 0(|x|1), [ a constant.
Then f(x) can be written as

N
f(x Z Y~ db) . n (33)
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32 TON TRAN-CONG

in D — 90D for some functions 6(x), b(x) € CO(D UoD). For every S(q,n) C
(D — dD) and any integer n > 0, the scalar and the (N — 2)th-order tensorial
functions 6(x) and b(x) satisfy
6(x), b(x) € C"'(S(a, ) if f(x) € C""'(S(q, m)). (34)
Proof. Theorem 1 gives a solution a(x) € C '(D UaD) to v’a = f. For every
S(q, n) c (D—-0D) and any n > 0, a(x) satisfies
a(x) € C"*(S(a, m) if f(x) € C""(S(a, m). (35)
Equation (28) defines an (N — 2) th-order tensor b(x) € C°(DUdD)NC"*'S(q, 1).
Lemma 3 then gives Eq. (29). Define 6(x) =V, -a(x) € CO(D uabD)n C"“S(q, n)
and recall that V’a = f; we have the required Eq. (33). For every S(q, n) C (D-90D)
and any »n > 0, we then use Eq. (35) to obtain
0(x), b(x) € C"™'(S(a, n) if f(x) e C""(S(a, ).

V6O(x) is curl-free. The divergence of the vector

N
i—1
sx) = e,(—1)"7(db), ;. x
Jj=1
is calculated from

N
i—1
(V-s)dxy,.n = > _{01(db),. ;. 41/(0x)}(—1)'"" dx;e; Adx; = d(db).
j=1
The last member is identically zero by direct calculation (Poincaré’s Lemma; see,
e.g., Flanders [37]). The theorem has been proved.

COROLLARY 1. Let D C R® be an infinite regular region and let f(x) € C 0(DuaD)ﬂ

CO’“(D — 0D) be a vector function bounded at infinity by 0(|x|1) , | a constant.
Then f(x) can be written as

3 .
f(x) = VO(X) + Y e,(=1)’ 7' (db), ;.3 = VO(X) + V x b(x) (36)
j=1
in D — 8D for some functions 6(x), b(x) € CO(D U aoD). For every S(q,n) C
(D — 0D) and any integer n > 0, the scalar and the vectorial functions 6(x) and
b(x) satisfy
6(x), b(x) € C"™'(S(a, n)) if f(x) € C""'(S(a, n)). (37)
5. Applications.
1. The homogeneous Lamé equation is
(1-20)Vu(x)+V(V-u)=0 (38)

where v is a constant (Poisson’s ratio). Mindlin [38] applied Helmholtz’s decompo-
sition (twice) to u(x) to show that the general (Papkovich-Neuber) solution to Eq.
(38) is

u(x) = 4(1 - v)b— V(x-b+¢) where V’b(x) = 0 and V’¢(x) = 0. (39)
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HELMHOLTZ'S DECOMPOSITION THEOREM AND POISSON’S EQUATION 33

Theorem 2 shows that the solution is applicable whenever |u(x)| = 0(|x|1), l a
constant, at infinity.

2. The solvability of the “Legendre equation”, found in the studies of Legendre
functions,

1
cos® y

9* 9 0
— 4 cosy— |cosy=— | | x+Ax(0,7)=b(0, ), (40)
26 ay ay

where b(0, y) is a given function, is a central device in the proof of the general-
ity of the above Papkovich-Neuber solution in terms of only b(x) (i.e., with ¢(x)
omitted; see Tran-Cong [39]). Its solution is complicated by any other method but
is fairly simple using the two-dimensional analogue of Theorem 1: By setting n =
In|[1 + tan(y/2)]/[1 — tan(y/2)]|, a(@, n) = b(8, y), it becomes

06>  on? +1) (e + 1)

Define x = (x,,x,) = (8,7), h(x) = (4n) 'In(x] + x7), &l +2,y, -x) =
hy(x —y) — T2 (k1) "'d*hy(y, —x) . The analogue of Eq. (15),

2 2 2n 2n
9 O V0. )+ A E0. ) = — a6, y).  (41)
(e

$(x) = —/S{hz(x—y)ll —u(lyl=2)1+&(I+2,y, —x)u(ly| -2)}{(y)dy, dy,, (42)
turns it into a Fredholm integral equation with a weak singularity
(s x) +2 [ [ K %), 00, 20 v dyydyy = Flxxg) (43)

where K(x,y) = [8me™2/(e*2+1)’ Ty (x=y)[1 = (13l -2 +&,(1+2, ¥, —x)u(ly-2)}
and F(x,, x,) = [4¢”2/(e™ + 1)*]a(x,, x,). The solution {(x,, x,) to Eq. (43)
is periodic in x, = 6, and Eq. (42) specifies the correspondence between {(x) and

$(x).
3. Consider next another interesting application of Theorem 1 and the technique
of Theorem 2.

THEOREM 3. Let the infinite regular region D C RY be star-shaped, which has the
property that every point in D can be joined to the origin by a straight line segment
that lies totally in D, and let y(x) € C°(DUdD)N C™(D — dD) be a harmonic
function in DU D and bounded at infinity by 0(|x|[) , | a constant. Then y(x)
can be expressed as

w=V-a where V'a=0anda(x) e C2(DUAD)NC®(D —8D).  (44)
Proof. Consider the (N — 1)-form ¢ = EU]GKN_.(—l)j_'(ay//axj)dx[j]. Since
V2¢// =0, we have

N
0
0=[V-(Vy)ldx,, n= Za— 12.-~,-.-N]( 1)’ la’xe Adx;- ]_dc
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34 TON TRAN-CONG

By the Converse of Poincaré’s Lemma (see Flanders [37]), ¢ is exact, i.e., ¢ = db
where b(x) € C*(D - dD) is an (N — 2)-form, and we can write

Vy =e(—1) 7' (@b), ;. x (45)

Define a scalar function ¢(x) € C'(DUAD)NC™(D —0D) and an (N — 2)-form
s(x) e C'(DUAD)N C™(D - dD) by

6(x) ——/{h(y [ = u(lyl = 21+ g0 +2, v, —x)u(lyl - 2)}w(y) d=(y),
= - / {h(y =01 — u(ly| = 2)] + g(/ +2, v, —x)u(ly] - 2)}by) d(y).

Then the function a(x) = V¢ —e;(— )’_l(ds) 12...5...y Satisfies

V-a= V ¢ - (d(ds))lz...N =V ¢ =V.

We also have , , ,
i—1
Va=V(V'¢)—e(-1)" (d(V’s)y ;. =0,
since V2¢ = y and V% = b. Therefore a(x) € CO(D uoebD)n C*(D - 8D).
The theorem has been proved. It can even be generalized so that D needs only be
deformable to star shape.
When N = 3, the theorem states that every harmonic function y(x) in a region

D c R® with m internal surfaces S,,S8,,...,S,, isexpressible as

v(x) = Zl _ck|+V-a whereV2a=0, (46)

with ¢, and ¢, ,1 < k < m, being, respectively, the constant position vector and
the associated scalar constant of an interior point of the corresponding internal
surface S, . D need not be star-shaped for N = 3 since Stevenson’s proof [40],
instead of the Converse of Poincaré’s Lemma, is used to write Vi = V x b +
Z:;l g, (¢, —x)/|e, — X|2 . The gradient of Eq. (46) also gives the first part of Theo-
rem IV of Weyl’s paper: The gradient of every harmonic function y(x) is equal to
Vxb+ Y1 g.(c, —x)/|c, —x|* for some b(x).
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