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Note the difference between this and the multiplication of a determinant
by a factor. In that case only one row or column contains this factor,
From (311) we see that a matrix changes sign only when all its elements
change sign; and it vanishes only when all its elements are zero.
Finally, matrices are added by adding corresponding elements, thus
ai G b b an+ by a2+ b

+ = - (312)
Q21 Qg2 ba1  bas as1+ by a2+ b

This follows from the addition of systems of equations involving tho
same set of unknowns.

With this brief excursion into matrix algebra we return to our four-
terminal network transformations.! In matrix form these are

I Y Yz E,

= X ) (275a)
I, Y21 Yoo E,
@H 211 %12 N~

= X ) (276a)
E, Qa1 Ro2 I,

N_ di11 g2 mﬁ
= X ’ Awmaav
E, g1 Ggo2 I,

m\m \E \:& NH

- X ? was—,n—v
I, har  hae E,
E, e ® E,

= X ) A&Ia;v
I e D ~1I,
E, D ® E,

= X . (280n)
I, C @ -1

Taken in pairs, these transformations are each others’ inverses, wnil
their respective matrices are inverse. The utility of these matrix {ortis
lies primarily in finding the resulting substitutions for several ot
terminal networks which are interconnected in various ways. Iy
transforming from one to another, we may also obtain equivalent
networks.

1 The application of matrix algebra to the general treatment of the four-termiinnl
network was first given by F. Strecker and R. Feldtkeller, “Grundlagen
des allgemeinen Vierpols,” E.N.T. 6, pp. 93-112, 1929. See also IL. (1, Buorwald,
“Die Eigenschaften Symmetrischer 4n-Pole . . .”, Sitzb. d. Preuss. Akad. . Wik
Phys.-Math. Kl. 33, pp. 784-829, 1931.
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Considering two four-terminal networks, these may be intercon-
nected in the following five fundamental ways, namely:

(a) cascade

(b) parallel

(c) series

(d) series-parallel
(e) parallel-series.

I'ig. 33 illustrates this.. In the following we shall treat these funda-
mental cases only. When more component networks are involved, an
oxlension of the same methods may be applied.

2 2 1
(5) (d) (e)

14, 33.—Possible interconnections of a pair of dissimilar four-terminal networks.

(1) Cascade connection. For the first network in the chain let us
Asmume that the input in terms of the output is given by (285a). For
tho second we will denote the voltages and currents as well as the
tieflicients of the matrix by the same letters primed, thus

E/ _ @ ® EY
" % . (285b)
| |l o s I :
Hineo the output of the first network equals the input to the second

@n = @H\m le = NK.

Hincee, substituting (285b) into (285a), we have

E, a ® @' @& EY
I C D e -1 |

shich pives the input in terms of the output for the two networks in
dndo. The resultant transformation matrix is obviously obtained
Iy lorming the product of the two individual matrices.
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(b) Parallel connection. Here the voltages at the ends of the two
networks are common. Using (275a) for the top network, and
1y m .Q.\:\ N\E\ EY
= X (275b)
_Nw\ @S\ N\S\ E,

for the bottom one, and noting that
Ei=E/;E, = Emn
we get by adding these matrix equations according to (312)

I+ Iy yu+ yu' yiz+ yr E,
= X (314)

I+ 1) Yo+ Yo' Yoz + Yoo E,

for the resulting parallel connection. The coefficients of the resultant

matrix are simply the sums of those for the individual matrices. By

applying the relations (292) to (295) the resultant y-system may bo

converted into any of the others.

(¢) Series connection. Here we use (276a) for the top network and

Ey 2 21 Iy

X (2760)

EY 20 229 Iy

for the bottom one. Then, since
Li=I/;1,=IY,
we have by adding (276a) and (276b)
E,+ E/| zu+ 2’z 2 I

. X (318)
E,+ Ey 2o+ 2’ Zaa+ 220 I,

for the series connection. Here the resultant transformation matrix I
obtained by adding coefficients in the individual z-systems. The resulls
ing z-system may, of course, be converted into any of the others if (hi
should be desired.

(d) Series-parallel connection. For the treatment of this case wo s
the transformation (284a) because here .the input currents and the ouls
put voltages are common. Thus if we let (284a) be the transformufiog
for one network, and

.@ _.\ \su»\ N.:.w\ .N. H\
e X (2840)
I’ hot'  hoo! By

that for the other, and note that
.N.h = N_\“ Ne.s = \u.m\“
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we have by adding
E,+ Ey hin4 by’ hag + hyo' I,

I+ 1y " hot + o' hoy + hao' x E, “ e
which is the transformation for the series-parallel combination.
(e) Parallel-series connection. Here (283a) together with
-\_ gu’ gl ||EY
@N\__ = s ol X £ (283b)
are used. Since in this connection
E.=E/;I,=1,,
addition of the matrix equations gives
I+ 1y _fgutgu’ gu+t g E,
= X (317)

WE:+ Ey g21+ go’  goo + gao I,

ns the desired relation for the combined system.

Various combinations of these fundamental modes of connection may
be treated by applying the
fnme general principles.
There is one important re-
uriction to the method, how-
over, which should be pointed
out at this time. This has to

do with the cases b, ¢, d, and _ F1a. 34.—Parallel and series inter-connec-
¢, When one four-terminal tions of four-terminal networks for which the

: . matrix meth ini :
nolwork operates by itself, it  pehavior MOQMQ:MM mmwwws_:_sm gl i

i ovident that the current
which enters terminal 1’ (Fig. 32) is identical with that which emerges
ltom terminal 1. Both are I,. Likewise the current I, is that which
tnfors 2" or emerges from 2. When several networks are inter-con-
noeted, however, this condition is not assured unless certain other re-
(uirements are satisfied. If the current entering 1’ is not the same
an that leaving 1, or that entering 2’ is not the same as that leaving 2
the individual transformations which apply for each network by ?m&m
i longer hold when the networks are interconnected, and hence the
ahove methods of determining the combined performance fail!

Iig. 34 illustrates a parallel and a series case for which this condition

"G Baerwald, “Der Geltungsbereich der Strecker-Feldtkellerschen Matrizen-

luichungen von Vierpolsystemen,” EN.T. 9, p. 81, 1932,
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exists, l.e., for which the above methods of combination are invalid,
The student should convince himself of this by assigning arbitrary
finite non-zero resistance values to these networks and caleulating the
currents entering the terminals of the individual networks for an ag-
sumed impressed voltage.

The validity of the above methods of combination may be tested by
applying simple rules for the individual cases.! These rules are based
upon a recognition of the cause of the current unbalance at the pairy
of network terminals. Consider the parallel connection of Fig. 33b.
Suppose the networks are connected in parallel on their left-hand sides,
but that they are individually terminated in such impedances that tho
voltages E. and E," are equal. The right-hand sides can then be placed
in parallel without disturbing the in-
dividual behaviors in any way provided
no potential difference exists between tha
terminals to be joined, for, if potentinl
differences do exist between these termi-
nals, then currents will circulate hoe
tween the networks after the connection
is made, and thus the combined hu
havior will not be given by a superposi-
tion of the previousindividual behavior,
Furthermore, this requirement must be met for all frequencies and for
all possible load conditions.

In order to formulate this more definitely we must determine thou
additional potential differences for the connection in question and see
under what circumstances they will be zero. In Fig. 35 we have showi,
in addition to the usual voltages and currents, the voltage K whioli
appears between the terminals 1 and 2. By applying the usual principlos
of lumped network theory, this voltage may be expressed in terms of tha
voltages F, and E,. Suppose we write for the network N

E = a1E; + asFE,,

Fig. 35.—Terminal voltage con-
siderations necessary for the de-
termination of the wvalidity con-
ditions for the parallel interconnec-
tion when treated by matrix algebra.

(318)
and for the network to be placed in parallel

m~m‘ & Q&smws + Qw\mw\. A..W_I:v

Since, for this connection we must have E; = E,’ and E, = I, lly
will simultaneously be equal to E;o’ if

(310

If this condition (319) is fulfilled, then E;, will equal Ky’ for all londs _
1 0. Brune, EXN.T., Vol. 9, No. 6, p. 234, 1932.

7 !/
Q1= 01 ; Q2 = Qg .
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and for all frequencies simultaneously with the condition E, = E/'
Ey = Ey'. Then the voltages between the terminals 1’ and 2’ will m_mm
be equal in both networks, and consequently there will be no circulatory
currents between them after the parallel connection is made. The
relations (319) are, therefore, the necessary and sufficient conditions for

__,_5 validity of the matrix method of determining the combined behavior
lor the parallel connection.

These conditions ay now be
piven a physical interpretation
whereby they are more easily
applied to a specific case. Sup-
pose the networks are connected
in parallel on their input sides
but individually short-circuited
on their output sides, as shown
In Fig. 36a. Then E; = By’ = 0,
# that the condition a;, = a,’
lor (318) and (318a) becomes .
IV, = By’ which, for the existing (¢) (d)
tonnections, isthe sameasV = Fie. 36.—Validity tests for matrix methods
where V is the vol tage appearing of determining composite behavior.
hotween the short-circuited ends. If both networks are reversed, the
tost for V= 0 will correspond to a, = a’. These two tests, SEow for
most practical cases may be carried out by inspection, take the place of
the conditions (319).

I'or the series connection the validity test is illustrated by Fig. 36b.
Hore we can write

— Ejz3=
—Epy Y=0

Ers = bily+ bl
Evy' = b/I + b1, vv (820)

and since for the series connection it is necessary that

I, = Nkh I, = Iy
shull oceur simultaneously with

E, = @5&

the necessary and sufficient conditions become

bi=b/;b,=0y. (321)

'l

) first of these conditions may be checked by having the left-hand
% connected in series while the right-hand sides are open so that
fy = Iy = 0. Then V = 0 corresponds to by = b,” as shown in Fig. 36b.
ng the test with the networks reversed is a test for by = by,

Finally the tests for the parallel-series connection are shown in Fig.
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36¢c and d. Here the voltages which should be equal for all loads and
all frequencies simultaneously with E; = E\’ and I, = I’ are E;, and
Ey'. For these we can write
By = 1B+ cod
E\y' = ¢/'E{ + ¢TI
and thus have for the validity conditions

; (322)

1= c¢';c= ¢y, (322a)

For the connection of Fig. 36¢c we have I = I’ = 0; and since V = ()
corresponds to E = Ei»’, we see that this is a test for the first condis
tion (322a). The connection of Fig. 36d, on the other hand, makes E; «
Ey = 0 and I, = I’ so that ¥V = 0 is the test for the second condition
(322a). The series-parallel connection is essentially the same as thin
and, therefore, needs no special comment.

The student may apply these rules or tests to the network combinu
tions of Fig. 34. In these instances it is quite obvious that they are nol
satisfied. As an alternative to this method of testing by inspection ol
the network, he should calculate the coefficients a1, az, b, and by ol
equations (318) and (320) for these same networks and then apply the
criteria. (319) and (321). In this way he will appreciate how muali
simpler it is to apply the tests- by inspection than to make the cor
responding validity check analytically. When the networks involval
are fairly complicated, it may not be possible to apply the tests hy
inspection. Then the coefficients in the systems (318), (320), and (324)
must be determined. This may be quite laborious but it can always h#
done by the application of usual network principles.

When a larger number of networks are involved, the rules or touin
are carried out in the same way. Ends to be paralleled or placed i
series are short-circuited or left open respectively, while the opposils
ends are connected in the desired manner, and the voltages determingl
between all terminals which are to be joined. The networks are (hei
reversed and the tests repeated. All these voltages must vanish al all
frequencies in order for the matrix method of combination to be valid:

In network synthesis, i.e., in the design of four-terminal networlks
which are to meet certain prescribed characteristics, we may find thil
the desired result can be obtained from the combination of seversl
component networks after the matrix fashion. The problem may (1
be considered solved provided the network combination satisfies L
necessary tests for the particular interconneetion involved. <<:d

these are not satisfied, the difficulty may be overcome in one of soversl

ways.
Cases like those illustrated in Fig. 34 are very simple to handle, |

\
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the parallel connection, for example, if we modify the upper network
by femoving the series resistances from its bottom branches and adding
these to the series resistances of its top branches, respectively, it will
have the same structure as the lower network, and its external behavior
will be unchanged. In this modified form it may be placed in parallel
with the other network of similar form without violating the conditions

for this connection.

For the series com- ”ﬁwwmﬁﬂﬁ“u Tlmwwmw_uﬂwll
bination of Fig. 34 the B P

situation is still ! j
simpler. Here the con- _ .
ditions for the connec-
lion are met by invert-
ing the lower network Sriss Gopnaction

s0 that the result be- Fic. 37.—Use of ideal transformers in network inter-
comes symmetrical connections for obtaining composite behavior as pre-

about the horizontal dicted v% matrix methods when validity conditions are
not satisfied.

11

el

11

(o= o
Parallel Connection

center line.

When these or similar measures are insufficient, the situation can
always be met by using either input or output transformers of a 1:1
tatio in conjunction with the individual networks. In this way the cur-
tents entering and leaving the ends of each network are forced to be
equal. The transformers must of course be ideal so as not to affect the
net behavior. This introduces a difficulty from the practical stand-
point which can be only approximately met. It should also be pointed
out in this connection that transformers need be used only on all but

one of the component networks. In two

1:
[—>o j o I, networks, therefore, only one of these needs
QH i to be connected through an ideal trans-
1 2 former. Fig. 37 illustrates the general

scheme of transformer and network con-
IiG. 38.—Schematic of an  nections for the parallel and the series cases.
itleal aamumm.oddma ﬁ."ocm&m:wa as 6. Ideal t
§ two-terndianl i, s ransformers and transformers
without loss. Since ideal transformers of
various ratios enter into the discussion of four-terminal network analysis
(uite frequently, it might be well to point out at this time how their
iracteristics are taken into account.
I'or the ideal transformer of ratio 1:a, illustrated in Fig. 38, the
following system of equations may be written

v ;— na
\: ' !@w o+ QNN
@
\_ = Q\mw e ;Nu

(323)



