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The Origin of Quaternions
Thomas Bannon

Thomas Bannon (tbannon@adelphi.edu) is a retired New
York City high school mathematics teacher. He currently
works as an adjunct at Adelphi University in Garden City,
New York. He has a B.S. in mathematics education from St.
Francis College, a M.A. in mathematics from Queens
College, a M.S. in computer science from the New York
Institute of Technology, and a D. A. in mathematics from
Adelphi University under the direction of Robert Bradley. All
his free time is taken up enjoying his new granddaughter,
Abby.

On October 16, 1843 while walking with his wife along the Royal Canal in Dublin, Sir
William Rowan Hamilton had an insight into a problem he had been working on for
over a decade. Sir William was trying unsuccessfully to develop a theory of triplets.
His goal was to define operations on ordered triplets that would obey the laws of real
number arithmetic but he was unable to find a satisfactory definition of multiplication.
He believed his insight would lead to a solution of this problem. He was so elated that
he immediately carved onto the side of a bridge the basic equations that governed the
behavior of the mathematical entity that he called quaternions. This dramatic scene
ensured Hamilton’s contribution would be remembered long after quaternions faded
in importance.

What makes Hamilton’s discovery doubly interesting though is that the next day he
wrote a letter to a fellow Irish mathematician and friend John T. Graves. In this letter
he spelled out the thought processes including the dead ends that led to his eureka
moment. This letter gives a valuable insight into the deliberations of a great mathe-
matician as he struggles with a difficult problem. Fortunately this letter was published
[3] and is now available electronically.

Complex numbers
Before we look at this letter though we have to consider what led Hamilton to this
problem in the first place. By mid-nineteenth century mathematicians were aware of
the geometric properties of complex numbers. These were developed first by the Nor-
wegian born, Danish mathematician Caspar Wessel and later independently by the
French amateur mathematician Jean-Robert Argand. In the letter Hamilton states that
he is familiar with the English mathematician John Warren’s work on the subject [7].
Warren had identified line segments extending from the origin with complex num-
bers and showed how geometric constructions could be used to perform arithmetic
operations on these segments. Hence complex numbers could be identified with a
directed line segment or vector from the origin to a point in the plane. We can see
that associated with each complex number is an angle and a complex number can be
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Figure 1. Polar form of the complex number a + ib = r cos θ + ir sin θ .

written in terms of that angle and the length (modulus) of the line segment. That is,
a + ib = r(cos θ + i sin θ) where r = √

a2 + b2; see Figure 1.
Once this is done we can multiply complex numbers as follows.

[r1(cos θ1 + i sin θ1)][r2(cos θ2 + i sin θ2)]

= r1r2[cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + cos θ1 sin θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

This remarkable result means that a complex number of unit length cos θ + i sin θ can
be used as a rotation operator for two dimensional vectors. A vector represented by
a complex number can be rotated by an angle θ simply by multiplying its complex
number by cos θ + i sin θ .

(cos θ + i sin θ)(r cos φ + ir sin φ) = r cos(θ + φ) + ir sin(θ + φ)

In particular multiplication by the imaginary number i = cos(π/2) + i sin(π/2) re-
sults in a rotation of π/2, as shown in Figure 2.

i

R

a + ib 
−b + ia 

Figure 2. Multiplication of the complex number a + bi by i .

One of Hamilton’s early successes dealt with complex numbers. He replaced a com-
plex number with a couplet or an ordered pair of real numbers. He then defined ad-
dition and multiplication of these couplets using the same rules as those for complex
numbers without ever explicitly mentioning the imaginary number i . He showed that
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with these rules his couplets formed what we would now call a field. He noted that
one of the reasons this could be done was that the “law of the modulus” was ob-
served. In terms of complex numbers this meant that when two complex numbers
were multiplied the product of their lengths equals the length of their product. In
terms of Hamilton’s couplets this law states that in order for multiplication of cou-
plets to be validly defined as (a, b)(x, y) = (ax − by, ay + bx) it must be true that
(a2 + b2)(x2 + y2) = (ax − by)2 + (ay + bx)2, which is easily verified.

After his success with couplets Hamilton decided to see if he could define an algebra
of triplets. He undoubtedly hoped that such an algebra would yield a rotation opera-
tor for three dimensions. Using hindsight we can see that his project was doomed to
failure. A rotation in two dimensions is a rotation about a single axis normal to the
plane. In three dimensions rotations can take place about three axes. In moving from
two dimensions to three dimensions there is an increase of two degrees of freedom not
one. While a two dimensional entity (a complex number) can be a rotation operator
for a two dimensional vector, the analogous rotation operator for a three dimensional
vector must have two additional dimensions and be a four dimensional entity.

He also assumed that multiplication of his triplets would be commutative. This was
a reasonable but incorrect assumption for him to make. He had no reason to suspect
that he was dealing with noncommutative multiplication here and his realization that
he was might be classified as a mini-eureka moment.

The idea of the modulus of the complex number was extended to triplets and
later to quaternions by Hamilton. Thus the modulus of a triplet (a, b, c) becomes√

a2 + b2 + c2 and that of a quaternion (a, b, c, d) becomes
√

a2 + b2 + c2 + d2.
Hamilton insisted that a valid definition of multiplication must obey the law of the
modulus which states that the product of the moduli of the factors must equal the
modulus of the product.

Early attempts
We are now ready to follow the evolution of Hamilton’s ideas as described in his letter
to Graves. If you have not done so yet, now might be a good time to download the
letter and use what follows as a guide to Hamilton’s ideas. He begins by multiplying
two triplets of the form (a + ib + jc) where i and j are two different imaginary roots
of −1. He also assumes multiplication is commutative so i j = j i .

(a + ib + jc)(x + iy + j z)

= ax − by − cz + i(ay + bx) + j (az + cx) + i j (bz + cy)

He states that at this point he does not know how to handle the i j term. He then
simplifies the problem by squaring a triplet and uses the law of the modulus to check
if the multiplication is legitimate.

(a + ib + jc)2 = a2 − b2 − c2 + 2iab + 2 jac + 2i jbc

(a2 + b2 + c2)2 = (a2 − b2 − c2)2 + (2ab)2 + (2ac)2

He notes that the law of the modulus will only hold here if the last term 2i jbc dis-
appears. He toys with the idea of setting i j = 0 but feels uncomfortable doing so. He
then states that he “perceives” that the last term would also disappear if i j = − j i .
He decides to abandon his assumption that the multiplication is commutative and let
i j = k and j i = −k leaving open the possibility that k = 0.
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To further test his hypothesis he multiplies the special case

(a + ib + jc)(x + ib + jc) = ax − b2 − c2 + i(a + x)b + j (a + x)c + k(bc − bc)

and sees that the law of the modulus is satisfied. He also notes that analogous to com-
plex numbers, an angle can be associated with each of the factors such that the sum
of the angles of the factors equals the angle of the product. He does not supply all the
details but this could be done as follows. Rewrite the product as

(
a +

√
b2 + c2 �u

) (
x +

√
b2 + c2 �u

)
= ax − b2 − c2 + (a + x)

√
b2 + c2 �u

where �u is a unit vector in the direction ib + jc. Then let

θ1 = tan−1

√
b2 + c2

a
, θ2 = tan−1

√
b2 + c2

x
, θ3 = tan−1 (a + x)

√
b2 + c2

ax − b2 − c2

which are related by

tan(θ1 + θ2) =
√

b2+c2

a +
√

b2+c2

x

1 − b2+c2

ax

= (a + x)
√

b2 + c2

ax − b2 − c2
= tan θ3.

We can only imagine that promising results like this are what kept Hamilton working
on this problem for ten years.

He then finds that if he multiplies two general triplets using i j = k and j i = −k,

(a + ib + jc)(x + iy + j z)

= ax − by − cz + i(ay + bx) + j (az + cx) + k(bz − cy),

then the law of the modulus is satisfied,

(a2 + b2 + c2)(x2 + y2 + z2)

= (ax − by − cz)2 + (ay + bx)2 + (az + cx)2 + (bz − cy)2.

The eureka moment
At this point he realizes that he may be able solve his problem by introducing a fourth
dimension. He can treat k as another distinct imaginary unit with k2 = −1, i j = k
and j i = −k. He dubs these four dimensional objects quaternions. Making use of the
insight that and assuming that his three imaginary units would behave analogously
when multiplied, he posits that i j = − j i = k, jk = −k j = i , and ki = −ik = j .

Hamilton carves the equation i2 = j2 = k2 = i jk = −1 onto the bridge.
Up until now these are assumptions. He then undertakes the straightforward but

tedious task of multiplying two general quaternions using these assumptions and veri-
fying that the result obeys the law of the modulus. He is delighted to find that the terms
not involving squares cancel and the remaining terms are just those needed to verify
the law of the modulus, thus justifying his assumptions.

Hamilton then defines division. At this point he knows that quaternions under the
operations he has defined obey all the laws of ordinary arithmetic except that mul-
tiplication is not commutative. In modern terminology they form a noncommutative
division ring. The algebra works. He then turns his attention to the geometry.
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He associates each quaternion with a modulus and an angle. For a quaternion
q = a + ib + jc + kd we define its modulus as μ = √

a2 + b2 + c2 + d2. Then
q = μ(q0 + iq1 + jq2 + kq3) with q2

0 + q2
1 + q2

2 + q2
3 = 1.

If we write �v = iq1 + jq2 + kq3 , |�v| =
√

q2
1 + q2

2 + q2
3 , and �u = �v/|�v|, then

q =μ(q0 + |�v| �u) and, because q2
0 + |�v|2 = 1, there exists a ρ which Hamilton calls

the amplitude of the quaternion such that q = μ(cos ρ + (sin ρ) �u).
Hamilton then defines two other angles, the colatitude φ and the longitude ϕ. This

allows him to write the unit vector �u = i cos φ + j sin φ cos ϕ + k sin φ sin ϕ; see Fig-
ure 3. Putting this all together we get the quaternion in the form

q = μ cos ρ + iμ sin ρ cos φ + jμ sin ρ sin φ cos ϕ + kμ sin ρ sin φ sin ϕ.

i

k

j

sin

cos

sin

sin sin

sin cos

1

u

φ

φ

φ

φ
φ

φ

ϕ

ϕ

ϕ

Figure 3. Coordinates of the unit vector �u.

Hamilton then looks at some special cases which arise in the multiplication of
quaternions. If the amplitude of the quaternion is ρ = π/2, then the scalar part van-
ishes, leaving what he here calls a pure imaginary and will later be called a pure quater-
nion. He shows that the square of a pure imaginary is real and negative.

Quaternions versus vectors
Hamilton will later identify a pure quaternion with a vector and his followers will
declare vector analysis to be superfluous because quaternions do all that is necessary
with vectors. However, vectors would later be preferred to quaternions because they
generalize easily to higher dimensions and they are easier to understand. Indeed most
modern books dealing with quaternions, for example [5], explain them in terms of
vectors. But we cannot underestimate the importance of quaternion theory in the de-
velopment of vector analysis.

The cross and dot products arise naturally in the multiplication of quaternions. In
the modern notation of vector analysis Hamilton’s product of two pure imaginaries
p = 0 + �p and q = 0 + �q can be written as pq = − �p · �q + �p × �q . At the end of
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the letter when Hamilton multiplies two pure imaginaries, he describes the result as
follows.

. . . the product-line is perpendicular to the plane of the factors; its length is the
product of their lengths multiplied by the sine of the angle between them: and the
real part of the product, with its sign changed, is the same product of the lengths
of the factors multiplied by the cosine of their inclination.

As we see he describes what would later be called the cross and dot products in detail.
We can be sure that Hamilton was confident that he would be able to find something

analogous to the rotation operator of the complex numbers to rotate a vector. But he
will not succeed completely. The problem is that multiplying a unit quaternion and a
pure quaternion does not always result in a pure quaternion. Using modern notation the
product of a quaternion p = p0 + �p and a pure quaternion q = 0 + �q can be written
as pq = − �p · �q + p0 �q + �p × �q . We see that in order for the product to be a pure
quaternion the dot product �p · �q must equal zero which means that the operator would
have to be perpendicular to the vector.

Rodrigues’s rotation operator
There is however a way of defining a quaternion rotation operator. Olinde Rodrigues,
a French mathematician, solved the problem of rotating a three dimensional vector
in 1840, three years before Hamilton discovered quaternions. His solution translated
directly into defining a rotation operator for quaternions.

In terms of quaternions the solution is this. We pre-multiply the pure quaternion by
a unit quaternion q = a + ib + jc + kd and post-multiply it by the conjugate q ′ = a −
ib − jc − kd. We will use the symbol q(·)q ′ to denote this operator. The product is
a pure quaternion. The result is that the vector is rotated about the axis determined
by ib + jc + kd. However, the amount of rotation is twice the amplitude ρ of the
operator.

This led to a dilemma more philosophical than mathematical which plagued the
early development of quaternions. There is a question as to which angle should natu-
rally be associated with a quaternion. Should we keep ρ with its original definition as
the amplitude of the quaternion or should we let ρ become the amount of rotation per-
formed by the general operator? If we take the second option a unit quaternion would
be written as

q = cos
ρ

2
+ i sin

ρ

2
cos φ + j sin

ρ

2
sin φ cos ϕ + k sin

ρ

2
sin φ sin ϕ.

This is essentially what Rodrigues did although of course he did not formulate it in
terms of quaternions. Hamilton came up with the same solution independently of Ro-
drigues (there is no evidence that he was aware of Rodrigues’s work) but never pub-
lished it. Even though the second option simplifies matters when working with the
general rotation operator, Hamilton chose to stay with his original definition of ρ. For
more information on Rodrigues’s contributions see [1, introduction].

It is easy to surmise why Hamilton chose the first option. He considered quaternions
first and foremost as algebraic entities. Their geometric properties would always come
second in his mind. With the first option the value of ρ is π/2 for i , with the second
ρ = π . Associating i with a rotation of π/2 works so well in the complex plane, it was
difficult to abandon this idea. It was commonly believed that a rotation of 2π must
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restore an object to its original state. Hence, a rotation of 2π should be equivalent to
one of 4π . Yet if the imaginary unit i is associated with a rotation of π , then i2 = −1
is associated with a rotation of 2π and i4 = 1 with one of 4π . Algebraically, i2 could
not be considered equivalent to i4. The algebra and geometry do not agree.

Associating the imaginary units with rotations of π/2 could seem justified by the
fact that multiplying i times the pure quaternion j results in a rotation of j by the
amount π/2 to the pure quaternion k, mimicking what occurs in the complex plane
See Figure 4. This however only works because i is perpendicular to j .

i

j

k

i

j

k

i

j

k

ij = k

j

i

Figure 4. Rotations by π.

There is a compelling reason to associate all quaternions with twice the value of
Hamilton’s ρ and hence to associate the imaginary units with rotations of π . Suppose
we wish to find an operator for a rotation that composes two rotations. The operator
r(·)r ′ which composes the rotation performed by p(·)p′ followed by the one performed
by q(·)q ′ can be easily found by multiplying r = qp. (Note that the order of the mul-
tiplication is important since multiplication of quaternions is not commutative.) All of
these operators lead to rotations with twice the value of Hamilton’s ρ. So if we wish to
compose a rotation about j followed by a rotation about i using Hamilton’s equation
i j = k, the amount of rotation associated with an imaginary unit must be π not π/2.

Later physicists discovered objects called spinors which have the property that a
rotation by 2π places them in a negative state and a rotation of 4π restores them to their
original state. The algebra and geometry of quaternion rotations agree in a reality, just
not the familiar one. For more information on quaternion rotations and their relation
to spinors see [6].

Quaternions today
Quaternions had a good run. Vectors gradually replaced quaternions in most applica-
tions but applications for quaternions still crop up. They are still used as an example
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of a non-commutative division ring and in the study of rotation groups [1]. Graves
built on Hamilton’s work to develop octonions [2]. Quaternions have recently been
used in computer graphics because they solve the problem known as gimbal lock and
make continuous rotations easier to program [4]. They will always ultimately be re-
membered though for the image of an exuberant man carving their equations onto a
bridge.

Summary. We discuss a letter that Hamilton wrote a letter the day after he discovered quater-
nions. Describing what led to his discovery, it gives a valuable insight into the deliberations of
a great mathematician as he struggles with a difficult problem.
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Celebrants of Pi Day will be able to celebrate π correct to four decimal places
on 3/14/15. Indeed, those with digital watches should revel at 9:26:53a.m., when
they can claim nine places. Those with watches that indicate hundredths of a
second can extend this, however fleetingly, two more places, and those of us
who are continuously inclined can enjoy infinite agreement, which will not occur
again for a century.

—John Lander Leonard, 1935–2014,
Emeritus, Department of Mathematics, University of Arizona
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