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A Unified Approach to Short-Time  Fourier  Analysis 
and Synthesis 

JONT B. ALLEN AND LAWRENCE R. RABINER, FELLOW, IEEE 

Absmt-Two distinct  methods  for  synthesizing a si@ from its 
short-time Fwria trrnsform have  previously been proposed. We d 
these  methods  the filter-bank armmation (FBS) method and the O V ~ -  
lap add (OM) method Each of these  synthesis t a u s  has unique 
advantages and digdvlntages m various rpplicrtiom due to the  way in 
wllirh the signrl is reconstructed. In this paper  we unify the ideas be- 
hind the two synthesis t w u e s  d discuss  the shnilrrities d diffes- 
ewes between these  methods. In puticulu, we explicitly  show  the 
effects  of modificrtions made to the short-time trrnsform (both faed 
and time-v.rying modifiitiom are considered) on the resulting 
and disuss applications whHe each of the techniques would be most 
useful. The  interesting case of nonlinear modifiitiom (possiMy signal 
dependent) to the  short-time Fowkr tnnsfcam is dao disc& Fi- 
d y  it is shown that a f d  duality exists betweea the two synthesis 
methods based on the  properties of the window used for obtaining the 
short-time  Fourier transform. 

T 
1. INTRODUCTION 

HE CONCEPTS of short-time Fourier analysis  and 
synthesis are fundamental for  describing any quasi- 
stationary (slowly time varying)  signal  such as speech. 

With the advent  of the fast Fourier  transform, as well as 
modem digital  filtering techniques, implementations of  signal 
processing  systems  based on the short-time Fourier  transform 
have  become  practical  and  are  used in many applications 
[ 1 ] -[4]. The theory behind short-time Fourier analysis  and 
synthesis has evolved in several  discrete  and  usually  discon- 
nected steps [ 11 4 8 1 .  It is the purpose of this paper to unify 
the various  methods of analysis  and  synthesis,  and to show the 
effects of  modifying the short-time Fourier  transform on the 
resulting signal. 

11. DEFINITION OF THE SHORT-TIME 
FOURIER TRANSFORM 

Let x(n )  be  a signal' defined for all n ,  and let X,(e'"q be 
the short-time Fourier  transform of x ( n )  evaluated at  time n 
and frequency wk. In general one can define the short-time 
Fourier  transform in terms  of  the  output of an arbitrary bank 
of filters.  However, we shall restrict ourselves to the much 
simpler  case  of identical, symmetric, bandpass fiters uni- 
formly  spaced in frequency. The result of these simplifica- 
tions is to allow the use of a  single lowpass filter (window 
function) w(n) which determines all of the properties of the 
filter bank. The short-time Fourier  transform may then be 
defined as [4] 

X,(e jwk)=  C w(n - rn) x(m)  e-jwkm. (2.1) 

Equation (2.1) shows that w(n), the window,  selectively de- 
termines the portion of x(n )  which is being  analyzed. 
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formulation. 
'Our results may be equally well stated  in a continuous  time-domain 

rn=n 

Fig. 1. An interpretation of the  weighting of  the signal 'for  computing 
the  short-time  spectrum. 

Fig.  1  shows  a  typical  example  of the signals involved  in the 
computation of (2.1) for w(n) an exponentially decaying  win- 
dow. For this window it is seen that  the analysis  weights the 
most recent samples (i.e.,  values  of x ( m )  near m = n )  most 
heavily  in computing the short-time Fourier  transform. 

Two  equivalent but distinct interpretations may  be  given to 
(2.1). The fmt interpretation is that of a filter4,ank analysis 
in which X,(e'"k) is viewed as a function of n for a  fmed wk. 
In this case X n ( e ' W q  can  be written as the linear convolution 
(denoted here by *) of the signal x(n )  elWkn with the impulse 
response w(n),  i.e., 

x,(ejwk)  = [x(n)e-'"kn1 * w(n)  (2.2) 

where w ( n )  is a lowpass filter being applied. to  the signal 
x(n )eJWkn.  The modulation of x(n )  by e-'"@ serves to 
shift the frequency  spectrum of x ( n )  at frequency wk to 0 
frequency. Thus the short-time Fourier  transform can  be 
thought of as filtering the shifted spectrum of x ( n )  in the region 
of frequency wk by the low-pass filter y(n). 

The  second interpretation of Xn(eJwk) is as the normal 
Fourier  transform (Le., z-transform  evaluated on the unit 
circle) of the modified  sequence 

y,(rn) = x ( m )  w(n - m). (2.3) 

For this case we interpret x,(ejwk) as a function of wk for a 
fxed value  of n .  Equation (2.3) shows that,.for n constant, 
y,(m) is a product of x and w. Thus  the  normal  Fourier trans- 
form  of y, is the complex convolution of the  Fourier trans- 
forms of x and w. As such the details of the resulting short- 
time Fourier  transform are greatly  influenced by the choice  of 
windows. Thus it is important to design  a  window consistent 
with  the desired time and frequency resolution of  the short- 
time transform. By way of example,  assume the window is 
causal,  and  of duration N samples, i.e., 

w(n)=O, n < O , n > N  

f O ,  O < n < N -  1. (2.4) 

Fig. 2 shows plots of typical short-time transforms of  voiced 
speech for w(n)  a  Hamming  window-Le., 

0.54 - 0.46 cos  (2nn/N), 0 < n < N - 1 
w(n)  = 

I O ,  otherwise. (2.5) 
Part (a) of this figure  shows the signal yn(rn) of (2.3) for 
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Fig. 2. Typical signals and the resulting log magnitude spectra for w(n) 
a Hamming window of length N = 400 (parts (a) and (b)) and N = 50 
(parts (c) and (d)). 

N =  400, and part (b) shows the log magnitude (in dB) of 
&(eJwk) evaluated at  the set of frequencies 

where L = 1024 in this case.  Similarly Figs. 2(c) and 2(d) 
show y ( n )  and the resulting log magnitude short-time spectrum 
for N =  50. (The reader should note  the different time scales 
for parts (a) and (c) of this figure.) The differences in resolu- 
tion, and  level of detail of the resulting spectra are apparent. 

For some applications (e.g., spectrum displays 191, signal 
detection, speech pitch [ 101, and formant estimation [ 1  1 ] ) 
the short-time Fourier transform is used  primarily as a non- 
stationary representation of the signal properties. In such 
cases no synthesis procedure is required. However, for many 
other applications, the short-time Fourier transform is used as 
an intermediate representation of the signal.  Examples of 
these applications include vocoders [ 11, [4] and  signal  pro- 
cessors  where we  wish to modify the short-time transform in a 
way that may take advantage of nonstationary spectral proper- 
ties of the signal [21, 131 , [ 121. As such, a method for re- 
constructing the signal x ( n )  from its short-time transform is 
required. In the next sections, we discuss the two known 
synthesis methods [41,  [81. 

111. FILTER-BANK  SUMMATION (FBS) FOR 
SHORT-TIME SYNTHESIS 

The first method of reconstructing x ( n )  is the classical 
method which is related to  the filter-bank interpretation of the 
short-time Fourier transform.. It was shown in Section I1 that 
for any frequency w k ,   X n ( e J w k )  is a low-pass representation 
of the signal in a band centered at q .  Thus a reasonable 
synthesis method is to modulate Xn(eJwk)  back to  frequency 
W k ,  and then sum the result over frequency. The first oper- 
ation results in the signal 

(3.3) 

where the sum  over k extends over the number of frequencies 
used in the analysis. 
To show that y ( n )  equals the original  signal x ( n ) ,  we use 

(2.1) in (3.3) to give 

Interchanging orders of summation gives 

(3.5) 
m k 

If  we assume that  the analysis is performed at L uniformly 
spaced frequencies (as in (2.6)) we can  sum  over k in (3.5) 
giving 

y ( n )  = w ( n  - m ) x ( m )  L6(n  - m - r L )  (3.6) 
00 

m r = - -  

where 6(n) = 1 for n = 0 and  is zero for n # 0. Evaluating 
(3.6) for m = n  - rL (i.e.,  when 6 ( n  - m - r L )  = 1) gives 

A n )  = L w ( r L )   x ( n  - rL) .  (3.7) 

Since w ( n )  is of duration N samples, we see that if L 2 N then 
(3.7) can  be truncated to the r = 0 term giving 

m 

r=-00 

y ( n )  = L w ( 0 )   x ( n ) .  (3.8) 

Thus for L 2 N the reconstructed sample y at time n is a 
scaled (by L w ( 0 ) )  replica of the  input sample x-i.e., the  short- 
t ime Fourier transform  representation is exactly  invertible  by 
the FBS method.  In Section VIII, we will show that this 
synthesis procedure is based on  the  identity 

L ~ ( o )  6 ( n ) =   w ( n )   e j W @  (3.9) 
k 

which is always true  for sufficiently dense  samples of w k .  
If L ,  the number of uniformly spaced  analysis  frequencies 

(00, wl, * * * , O L - ~ ) ,  is less than  the window duration N then 
(3.7) says that y ( n )  cannot be exactly a replica of x ( n )  unless 
the window satisfies the further property that 

w ( r L )  = 0, r = f l ,  f 2 ,  . * . . (3.10) 

Note that  in this case (3.9) still holds. Techniques for design- 
ing windows  (low-pass filters) which approximately satisfy 
(3.10) are givenin [SI and [ 61. In the remainder of the dis- 
cussion we will assume that L 2 N so that  (3.8) holds, even 
when (3.10) does not. A discussion of the required "sampling 
rates" of X n ( e J w k )  in time ( n )  and frequency ( k )  will  be  given 
in Section VI1  of this paper. 

IV. OVERLAP  ADDITION (OLA) METHOD FOR 
SHORT-TIME SYNTHESIS 

An alternative method of synthesis is based on the normal 
Fourier transform interpretation of the short-time transform. 
Since X n ( e J w k )  of (2.1) can  be  considered to be the Fourier 
transform of the sequence 

j?,,(m) = x ( m )   w ( n  - m )  (4.1) We then obtain the reconstructed signaly(n) as 
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Fig. 3. Graphical interpretation of' the overlapadd synthesis method 
showing  the  overlapping  sections  (weighted by a Hamming window) 
and the  resulting  summation. 

then x ( m )  (or equivalently x ( n ) )  can be reconstructed by 
taking the inverse Fourier transform of X n ( e l w q  and  dividing 
out  the window  (assuming it is nonzero for all  values  of n 
which  are considered). Although this procedure is valid it will 
be shown later that  the resulting short-time transform esti- 
mates are an undersampled (in time) representation of the 
signal, and as such turn out not to be useful for applications 
when modifications are made to  the short-time transform. In 
this section we present a properly sampled  and more robust 
synthesis procedure similar to the OLA method [ 131, [ 141 
(which does aperiodic convolution using discrete Fourier 

The synthesis procedure for  the OLA method is to form the 
transforms). 

S i g n a l  

y ( n )  = x m ( e j w S  e j w P  ] (4.2) 

where the summation over m is for overlappiflg  analysis  sec- 
tions with short-time Fourier transform Xm(elwk) .  Basically 
(4.2) says that to reconstruct the signal we inverse Fourier 
transform Xm(ejwk)  for each m at which  an  analysis  was per- 
formed, which, by the defmition of X ,  gives 

1. m k  

y m ( n )  = Lx(n)  w(m - n) (4.3) 

where L is the size of the inverse discrete Fourier transform 
and then we sum y , (n)  over m givhg 

A n ) =  ym(n)=Lx(n) w(m - n). (4.4) 

Fig, 3 illustrates the summation of (4.4) for the case of w ( n )  a 
Hamming window of duration N samples,  and for short-time 
analyses  being performed every m =N/4 samples. It is seen 
that, given any  value of n, a total of 4 distinct y m ( n )  terms 
contribute to  the value of y ( n )  for this example. 

m m 

The term Zm w(m - n) of (4.4) is seen to be the s u m  of 
the window shifted by m samples. By recognizing that  the ex- 
pression &,, w(m - n) is simply a sum of the values  of a low- 
pass  window, it can be shown [8] that if w(n) is sampled at a 
sufficiently dense rate, then 

w(m - n) = w ( e j o )  (4.5) 

independent of the window offset n, where W(ejo )  is the value 
of W(e'"), the transform of the window,  evaluated at zero 
frequency. Thus (4.4) becomes 

y ( n )  = ~ x ( n )  w(e io)  (4.6) 

showing that  the synthesis rule of (4.2) will  lead to exact re- 
construction of x ( n )  by  overlap-adding sections of the 
waveform. 

The entire synthesis procedure depends on the sampling  re- 
lation of (4.5). This relationship is valid to withinan aliasing 
error which can be  made  negligiably smd for sufficiently high 
sampling rates of the window-i.e., as the sampling rate of the 
short-time Fourier transform estimates increases, the aliasing 
error decreases monotonically to zero. 

m 

v. EFFECTS OF MODIFICATIONS TO  THE SHORT-TIME 
TRANSFORM ON THE RESULTING SYNTHESIS 

At this point we have shown that there are two distinctly 
different methods for reconstructing a signal from its short- 
time Fourier transform. Both methods have  been  shown to be 
capable of reconstructing the original  signal exactly (within a 
scale factor which is different in each  case)  when the short- 
time transform is unmodified. For most (if not all)  applica- 
tions, however, one is interested in making modifications to 
the short-time Fourier transform. These modifications take  on 
the form of truncation errors in vocoder applications and time- 
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varying filtering for signal processing  applications. In this sec- 
tion we show the  effects on the synthesized signal of fixed and 
time varying  multiplicative modifkations  to  the  short-time 
transform. 

A. FBS Method 

time transform as 
We represent a fmed  multiplicative modification to  the short- 

(5.1.1) 

where a e j w S  is a  frequency weighting function on the short- 
time transform. We assume that  the inverse transform of 
4 e i w 5  exists, and we call this sequence p ( n )  where 

(5.1.2) 

and L is the number of frequencies at which P(eiwq is evalu- 
ated-Le., the number of analysis  frequencies. The recon- 
structed signal y^<) from  the FBS method is 

(5.1.3) 

(5.1.6) 

= Lx(n)  * [w(n)p (n) l .  (5.1.7) 

~ h n s  the  effect  of  the fixed spectral modification P ( e j w q  is to 
convolve the signal x(n)  with the  product of the window w(n) 
and the impulse response of the  modification p(n).  Ideally 
one would expect the result to be of the form 

3 3 )  = x(n)  * p(n)  (5.1.8) 

rather than of the form of  (5.1.7). Thus for the FBS method, 
fmed spectral modifications are strongly affected by the win- 
dow, and only in the case  when the  time  duration of p(n)  is 
short compared to the window duration is it even approxi- 
mately true that 

P(n) % 3 n >  (5.1.9) 

 or timevary-  modifications we model E;,(eiwS as 

P,,(ejwq = x n ( e ' w ~ p n ( e i w ~  (5.1.10) 

and we define the time-varying impulse response due to the 
modification p, (m)  as 

p n ( m )  = - P, (e jwq  e j W p .  (5.1.1 1) 
1 

L k  

Proceeding as before we  solve for P ( n ) ,  due to  the modifica- 
tion, as 

range of the DFT index, 
'It is assumed  that for all inverse Dm's the  sequence is 0 outside  the 

~ ( n )  = X,(e'"k>p,(e-i"q e'"@ (5.1.12) 
k 

= e j w p  x(n - rn) w(m) e j w f l p n ( e j W k >   e j w e  
k k 

(5.1.13) 
= x(n - m )  w(m) Pn(eiwk)eiwkm (5.1.14) 

m  m 

= x(n - m) w ( m )  Lpn(m)  (5.1.15) 

= L  x(n - m) [ p , ( m )  w(m)I. (5.1.16) 

Equation (5.1.16)  shows that  for  the FBS method the  time 
response of  the spectral modification is weighted  by the win- 
dow before being  convolved with x(n).  Note also that  the 
effect of the spectral modification is instantaneous in time. 

In summary, for  the FBS method,  the  effect of a spectral 
modification (either fixed or time-varying) is to convolve the 
original signal with a time-limited window-weighted  version of 
the time response due to the modification. As such this 
synthesis method would  be useful for applications  in which 
modifications were  being made where the  time response due to 
the  modifkation (i.e., pn(m))  might be uncontrollubly long. 
Although the resulting modifications do  not match those 
which  were intended in this method, undesired large smearing 
in  time of the signal due to the  modification is controlled in 
the FBS method.  Further,  the time fidelity of the modification 
is maintained. 

B. OLA  Method 

m 

m 

Using the  representation of (5.1.1) for the OLA modification 
we obtain  for  the  reconstructed signal 

p ( n )  = X ,  (e jWk)   P(e jWq e j W p  (5.2.1) 

= x(1) w(m - I )  e-jwdP(ej"k)  ejwkn (5.2.2) 
m k  

m k I  

= ?  [ k  
x(1)  P(Jwk)  eiwkcn-n] [g w(m - 1 ) l  (5.23) 

= XU)   Lp(n  - I )   ~ ( 2 ' )  (5.2.4) 
I 

or 

P(n) = LW(ei') [x (n )  * p ( n ) l .  (5.2.5) 

Equation (5.2.5) shows that P ( n )  is the convolution of the 
original  signal with  the  time  response of the  spectral  modifica- 
tion-i.e., no window modificatons of p ( n )  have occumd with 
OLA. (The  reader should realize that an appropriate change 
must be  made to  the analysis-i.e.,  padding the windowed  in- 
put signal with a sufficient number of zero valued  samples-to 
prevent time aliasing when implementing the analysis  and syn- 
thesis operations  with FFT's, which have length L .  If a modi- 
fication P(eJWk) has a  time response  which is effectively No 
points long, the analysis length L must be at least N + No - 1 
where the window length is N.)  

For the case of a time-varying modification we obtain 

Xm(ejwqPm(eiwk)   e jwkn (5.2.6) 1 
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Fig. 4. Block diagram of the effects (in time) of making modifications 
to the  short-time  spectrum  for  the OLA method. 

which  can  be  manipulated into  the form 

y^(n) = x ( l )  w ( m  - I) Pm(ei"k)  ejwk(n-r) 
I m [ k  

(5.2.7) 

Using (5.1.1 l), we get 

y"(n) = L x(Z) 1 w ( m  - Z)Pm(n - I ) ]  . (5.2.8) 
I IIm 

If we let r = n - Z or 1 = n - r then (5.2.7) becomes 

?(n> = L x (n  - r )  p m ( r )  w ( m  - n + r ) .  (5.2.9) 
r m 

If we define p^ by 

p^(r- n , r ) = $ ( q , r ) =  p , ( r ) w ( m  - q )  (5.2.10) 
m 

then (5.2.8) becomes 

The interpretation of (5.2.10) is that  for r held constant 
p"(q , r )  is the  true convolution of p m ( r )  and w ( m ) .  When 
(5.2.1 1) is interpreted in the time  domain, OLA is equivalent 
to a  tappeddelay line with  time-varying tap weights  where 
each tap weight is bandlimited  by the low-pass  window w. 
Fig. 4 shows a simple interpretation of this result. 

Thus for  the overlap  add method,  the time  varying  responses 
of each tap due to the spectral modifications are bandlimited 
by the window but  the modification acts as a  true convolution 
on the  input signal.  This is in direct contrast to the FBS 
method in which the modifications  were time  limited by the 
window  and  could  change instantaneously. 

where  we defiie  the inverse  Fourier  transform of ,!?(eiwk) as 

(6.2) 

(In the case  where e(n). is a random  noise, then  a statistical 
model for e ( n )  and E(eJwk)  might  be used. The results to be 
presented are not dependent on such a statistical model.) 

For  the FBS  method the effect of the additive modification 
of (6.1) is 

e ( n ) = z  E ( e  
1 i w k )  ei"@. 

k 

~ ( n )  = (X,(e'"k) + E(eiwk))   e jwkn (6.3) 
k 

which, by linearity, can  be put  in  the form 

~ ( n )  = y ( n )  + E ( e j w q   e j W p  (6.4) 
k 

or 

P(n) =v(n)  + Le(n)  (6.5) 

where y ( n )  is as defined in (3.8). Thus an additive spectral 
noise  modification results in an additive noise component in 
the reconstructed  signal.  The  reader  should notice that  the 
analysis  window  has  no direct effect on  the additive term in 
the synthesis but  that  the noise  increases linearly with the 
number  of  bands L .  

For the OLA method the effect of the additive modification 
of (6.2) is 

P ( n )  = ( X m ( e i w q  + E(e jwk) )  e'"@ (6.6) 
m k  

which  can be  put  in  the form 

9 (n) = y ( n )  + E(e'"k) e'"@ 
m k  [ 1 .  

= ~ ( n )  + L e ( n )  (6.7) 
m 

where y ( n )  is defied in (4.6). Thus for additive modifica- 
tions  the resulting synthesis contains a larger additive signal 
for the OLA method than  for  the FBS  method due to the 
overlap  between  analysis frames. For a Hamming  window  with 
a 4-to-1  overlap  where L the  FFT length  equals the window 
length, the additive term in the synthesis will be on  the order 
of four times greater3 (twice the noise  power) for  the OLA 
method than  for  the FBS method. As such the OLA method 
tends to introduce more  noise  than the FBS method, and 
thus  would  be  less useful for vocoding applications, etc.  It is 
easy to understand  these results by  recognizing that  the noise 
component e (n)  will  always  time alias regardless  of the  FFT 
length. This violates a basic  assumption  of the OLA synthesis 

VI. ADDITIVE MODIFICATIONS method, namely that  the short-time  Fourier  transform was 
We have  been  discussing the effects of  nonrandom multi- 

plicative  modifications to the short-time transform. It is also VII. SAMPLING RATES OF x,(ejwk) IN 
important to understand the effects of additive random  modi- 
fications to  the short-time transform. This type of  modifica- 
tion will  occur  when  implementing the analysis  with F l t e  
precision  (i.e.,  roundoff noise), or when  quantizing the short- 
time  transform as for  a vocoder [4] .  

adequately  sampled in frequency. 

TIME AND FREQUENCY 
A basic  consideration in the implementation of systems for 

short-time  Fourier  analysis  and synthesis is the selection of the 
rate at which X,(ejwk) should  be  sampled in  both time (n) 

We model additive modifications to the short-time  Fourier 
transform as 'We  are assuminn that noise seauences  for  consecutive  frames are 

h 

Y, (e'"k) = X ,  (ejwk) + E(e'"k) (6.1) implementations. 
uncorrelated. T k  is approximately  true  for  most  practical 
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and frequency (k) to provide an unaliased representation of 
Xn(elwk).  This question requires a careful consideration of 
the factors entering into  the  computation of Xn(e'"&). Un- 
fortunately confusion has existed in  the past on this point 
which has masked the real  issues.  The confusion is a result of 
the  fact  that if sampling rates lower than the theoretically 
minimum rate are used in either time (for  the OLA method), 
or frequency (for  the FBS method), x ( n )  can st i l l  be exactly 
recovered from the aliased (undersampled) short-time trans- 
form when  no modifications have been made. Such under- 
sampled representations are actually quite useful for applica- 
tions in which one is only interested in obtaining the short-time 
transform (e.g., spectral estimation, parameter estimation, etc.), 
for vocoder applications in which minimization of overall bit 
rate of the system is of prime importance, and for convolution 
by FFT methods. However, for applications in which one is 
interested in obtaining a short-time Fourier transform of the 
signal, performing some modification of the spectrum (e.g., 
fixed or time-varying fdtering), and then synthesizing the 
modified  signal, it is essential that  little or no aliasing occur in 
either the time or frequency domains. 

First we will discuss the required sampling rate of X,(eiwk) 
in time.  In this case, the linear filtering interpretation of Sec- 
tion I1 provides the necessary wight. There it was shown that 
for a fixed value of o k ,  Xn(e'wk) was the  output of a filter 
with impulse response w(n).  We have  assumed from the be- 
ginning that W(e'"), the Fourier transform of w(n),  is a low- 
pass function of bandwidth B Hz. Therefore, the frequency 
bandwidth of X,(e'"S is the same  as that of the.window, and 
thus according to the sampling theorem, X,(e'"S must  be 
sampled at a  rate of at least 28 samples  per  second  (sampling 
period of 1/(2B) second) to avoid  aliasing. By  way of ex- 
ample, for w ( n )  a Hamming  window of length N samples, then 
the bandwidth B is 

B = 2F, (Hz) 
N 

(7.1) 

where F, is the sampling rate of the signal x(n) .  Therefore, 
the required sampling rate of Xn(e'wk) in time is 2B = 4Fs/N 
samples per second. Thus for N = 100, Fs = 10 000 Hz, we get 
B = 200 H z ,  and we require to be  evaluated 400 
times per second-i.e.,  every 25 samples. In  general the 
sampling rate for an N-point Hamming  window is N/4, based 
on a 42-dB criterion on  the log magnitude spectrum-i.e., the 
bandwidth B is defined as the lowest frequency for which the 
log magnitude spectrum remains at least 42 dB  below the peak 
value. 

For  the OLA method, we have  already shown that  the analy- 
sis need be performed only 2B times per second, and that  the 
synthesis method reconstructs the signal  by  overlap-adding the 
individual time responses  due to each  analysis frame (with the 
appropriate. time shift). For the FBS synthesis method we re- 
quire Xn(e'wk) to be known for each  sample at  the sampling 
rate of the original  signal F,. As ych,  interpolation methods 
must  be  used to interpolate X,(e'"S from a  rate of 2B  sam- 
ples per second to  the rate of Fs samples per second as required 
by the synthesis procedure. Methods for performing the in- 
terpolation are discussed in [4] and [ 71 . 
To determine the required sampling rate of X,(eiwk) in fre- 

quency, i.e., to determine a f ~ t e  set of frequencies a k  = 
21rk/L, k = 0, 1, * * , L - 1, at which  must be spe& 
fied to exactly recover x(n) ,  we use the Fourier transform 
interpretation of X,(e'"k). Since the inverse ~our ie r  trans- 

form of X,(eiwk) is thpe-bited, we can use the sampling 
theorem to sample x,(e'"S in frequency at  a  rate of at least 
twice this "time width."4 Since the inverse Fourier transform 
of Xn(e'wk) is the signal x ( m )  w(n - m), and this signal is of 
duration N samples (due to the finite duration window w(n)),  
then  the sampling theorem says that X,(e'"S must  be sam- 
pled at  the set of frequencies corresponding to the N roots 
of unity 

in order to exactly recover x(n)  from X,(e'"S. Thus for our 
example of a Haplming  window of duration  N = 100 samples, 
we require X , ( e J W S  to be  evaluated at  100 uniformly spaced 
frequencies around the  unit circle. When modifications have 
extended the time length, w k  must  be appropriately increased 
in the OLA case. (In FBS, modifications cannot increase the 
time length.) 

Based on the above  discussion the total number of samples 
of X,(e'wk) that must be computed per  second for w(n),  an 
N-point H ~ i n g  window, is 

NT=N--4F, 4Fs - 
N 

or the  ratio between NT and Fs is 

(7.3) 

(7.4) 

Thus for our example of a Hamming  window, a properly sam- 
pled short-time transform requires on  the order of 4 times 
more information as would  be required relative to the original 
signal x(n) .  When modifications are to be  made, this repre- 
sents a lower bound on the required information rate for the 
short-time transform. In return for this redundancy one ob- 
tains a very flexible signal representation for which  extensive 
modifications in both  the time and frequency dimensions can 
be  made. 

We  have already  discussed the case in which X,(eiwk) can 
be undersampled in time for the OLA method (Section IV). 
Similarly Xn(ejwk) can be undersampled in frequency for  the 
FBS method. Basically, for this case, one must design a win- 
dow  whose frequency response approximates an ideal  lowpass 
filter as closely as possible. Then the number of frequency 
bands can be reduced to the minimum  by  using contiguous 
(nonoverlapping) analysis  bands. A reduction in the number 
of analysis bands of 4 to  1 as compared to a Hamming  window 
analysis  can  be obtained in this manner. Details of this imple- 
mentation are discussed in [41-[71. 

VIII. DUALITY BETWEEN FBS AND OLA 
Throughout this paper we have illustrated the complementary 

nature of the two synthesis methods. We now  show that, as a 
result of properties of the window w(n), a formal duality 
exists. The dudity is based on  the simple relations 

tion of the window,  whereas  the  "bandwidth" of  the  window is de- 
' The definition of the  "time  width" of the window is the total dura- 

fined as the cutoff frequency o f  the  window. 
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where L is the number of values of k used in  the summation. 
Equation (8.1) says that if w(n) is adequately sampled in time 
(i.e., for sufficiently many  values of m) then the sum of the 
sampled  values of w(n) is the 0 frequency value of the Fourier 
transform of the window W(elo )  independent of the time shift 
R. Conversely, Equation (8.2)  says that if W(eiw) is ade- 
quately sampled in frequency then  the sum  of the sampled 
values of w ( e l w )  is the zero time value of the inverse F O U I ~ ~  
transform of the frequency response of the window, i.e., w(0) .  

We have  already shown that (8.1) forms the basis for  the 
OLA synthesis method (4.5). It is readily  seen that (8.2) 
forms the basis for the FBS synthesis method by taking the 
Fourier transform of (3.9), and  recalling that  the multiplica- 
tion of a sequence by elWkn in time corresponds to shifting 
the Fourier transform of the sequence by cdk in frequency. 

Based on the duality relations of (8.1) and (8.2), it is easy 
to show that either synthesis method can  be  derived from the 
other method by  replacing  each dependent variable by its 
Fourier transform, and then interchanging the roles of fre- 
quency and  time. 

Finally it should  be noted  that (8.1)  and (8.2) may be de- 
rived from the Poisson  sum formula [ 15 l by  using either the 
“time limited” or bandlimited properties of the window [81. 

IX NONLINEAR MODIFICATIONS 
The idea of applying nonlinear modifications of the short- 

time Fourier transform prior to synthesis is a new unexplored 
area in signal  processing.  Several important applications are 
known to exist at  the present time. One is the speech stretch- 
ing problem where the time structure of a speech  signal is 
stretched without modifying the pitch. This application is one 
in which results from the OLA method appear to be better 
than with other methods. For example, to stretch speech  by 
a factor of two, a long window is used (25.6 ms) in order to 
resolve  each pitch harmonic. Then the number of short-time 
transforms are doubled by linear (or bandlimited) interpola- 
tion ~ming new short-time transforms at twice the time 
sampling rate of the original short-time transform. Finally 
the phase is computed at each frequency and doubled (the 
nonlinear part of the calculation). The stretched speech is 
then synthesized by the OLA method. The analysis-synthesis 
procedure is done using an FFT with  twice the length of the 
window to allow for  the time response due to  the modifka- 
tions which  have  been  made. Informal comparisons of the 
synthesis from the OLA method with that of the FBS method 
show the OLA method is better suited to this application. 

Another application for nonlinear spectral modifications is 
the speech derwerberation problem in which time varying 
modifications to  the short-time spectrum are dependent on  the 
short-time spectrum itself.  Details of this application are given 
in [3]. Several other applications of nonlinear modifications 
to  the short-time Fourier transform including dynamic  range 
compression  of speech and noise removal in music are d e  
scribed by Callahan [ 121. 

From experience it is known that  the OLA method works 
well when the modifications being  made are a function of the 
short-time transform. This is viewed  as a nonlinear modifica- 
tion since the coefficients of the time-varying filter are derived 
from the signal. The  power of the technique is that linear sys- 
tem ideas may be meaningfully  applied to a nonstationary, 
nonlinear problem. 

X. SUMMARY 
The purpose of this paper was to unify the various ap- 

proaches to implementing systems for short-time Fourier 
analysis  and synthesis of a signal. We have  discussed the 
similarities and differences between the two proposed methods 
of synthesizing a signal from its short-time transform. Finally, 
it was shown that a formal duality between the two synthesis 
methods could  be stated which  clearly  displays the comple- 
mentary nature of the two techniques. 
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