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How Do Humans Process and Recognize Speech? 
Jont B. Allen, Fellow, IEEE 

Abstmct-Until the performance of automatic speech recogni- 
tion (ASR) hardware surpasses human performance in accuracy 
and robustness, we stand to gain by understanding the basic 
principles behind human speech recognition (HSR). This problem 
was studied exhaustively at Bell Labs between the years of 1918 
and 1950 by Harvey Fletcher and his colleagues. The motivation 
for these studies was to quantify the quality of speech sounds 
in the telephone plant to both improve speech intelligibility and 
preference. To do this he and his group studied the effects 
of filtering and noise on speech recognition accuracy for non- 
sense consonant-vowel-consonant (CVC) syllables, words, and 
sentences. Fletcher used the term “articulation” as the probability 
of correct recognition for nonsense sounds, and “intelligibility” as 
the probability of correction recognition for words (sounds having 
meaning). In 1919, Fletcher found a way to transform articulation 
data for filtered speech into an additive density function D(f) and 
found a formula that accurately predicts the average articulation. 
The area under D(f) is called the “articulation index.” Fletcher 
then went on to find relationships between the recognition errors 
for the nonsense speech sounds, words, and sentences. This work 
has recently been reviewed and partially replicated by Boothroyd 
and by Bronkborst, et al. Taken as a whole, these studies tell us 
a great deal about how humans process and recognize speech 
sounds. 

I. INTRODUCTION 
PEECH recognition by machine is a critical core technol- S ogy for the “information” age. Existing machine recog- 

nition systems do not work the way humans work. This is 
because automatic speech recognition (ASR) machines use 
spectral templates, while humans work with partial recognition 
information across frequency, probably in the form of speech 
features that are local in frequency (e.g., formants). It has been 
shown, for example, that forcing partial recognition errors in 
one frequency region does not affect the partial recognition 
at other frequencies (i.e., the partial recognition errors across 
frequency are independent). To extract the features spread 
across frequency requires frequency-local signal processing, 
namely independent feature-processing channels. It seems to 
be this local feature-processing, uncoupled across frequency, 
that makes human speech recognition (HSR) robust to noise 
and reverberation. 

The partial recognition (i.e., extracted features) are then 
integrated into sound units (phones), and the phones are then 
grouped into syllables, then words, and so forth. This model of 
HSR was devised by Harvey Fletcher in about 1918 in the form 
of an empirical probabilistic analysis of speech recognition 
scores obtained from a series of listening experiments. In these 
experiments, the context in spoken speech was selectively 
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removed, the speech was altered by filtering and additive noise, 
and the phone, syllable, word, and sentence recognition scores 
were estimated. This analysis was first published in its full 
glory in 1953, four years after Fletcher’s retirement from Bell 
Labs and 35 years after its conception. We believe that very 
few people have attempted to understand this publication in 
any depth.’ 

In the machine case, when using spectral templates, the 
errors across frequency are not independent. As a result, 
when presented with noise, filtering, reverberation, multiple 
speakers, and other degradations, machine systems are not 
robust because degradatons at one frequency affect the entire 
template. Thus, to reach the important goal of robust ma- 
chine recognition, we need a better understand of the partial 
recognition of speech processing, as found in HSR. 

In this paper, we will describe articulation testing, the exper- 
imental results, and Fletcher’s quantitative analysis methods 
(the model of HSR) that he developed at Bell Labs in 1919. We 
will interpret and discuss the experimental data and Fletcher’s 
model in terms of our present day knowledge of the auditory 
system. We then will relate this updated model to the problem 
of robust ASR. 

11. THEORY OF HSR 

A. History 
Beginning about 1910, Campbell and CrandaU from AT&T 

and Westem Electric Engineering initiated a series of experi- 
ments to explore the nature of human speech perception. After 
1918, these experiments were continued by Fletcher and his 
colleagues at The Bell Telephone Laboratories (Westem Elec- 
tric Engineering until 1925) [15]. These studies led to a speech 
recognition measure called the articulation index, which ac- 
curately characterizes speech intelligibility under conditions 
of filtering and noise. Fletcher used the word articulation in 
this perceptual context to mean the probability of correctly 
identifying nonsense speech sounds. The word intelligibility is 
defined as the probability of correctly identifying meaningful 
speech sounds, such as words. 

The original experiments in 19161918 began with normal 
conversational speech over a modified telephone channel. The 
subjects were asked to listen to distorted speech sounds and 
repeat what they heard. Fletcher refined the measurement 
methods, and by 1919 (see Fig. 1) they were using nonsense 
sounds (e.g., “yif,” “vou,” and “moush”), as described in a 
1921 intemal AT&T report by Fletcher entitled “An empirical 
theory of telephone quality.” These nonsense words were 

‘We know of no one who has a working knowledge of the details in this 
difficult paper. 
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Fig. 1. This shows an example of the articulation score sheet used in 1928. 
This example corresponds to a 1.5 kHz low-pass filter applied to the speech. 
The first column is the carrier phrase, followed hy three sets of “called” 
and “observed CVC’s. At the top is the overall CVC score (S = 0.515 or 
51.5% correct). At the bottom, the vowel score is shown as 2) = 0.909, 
namely, 90.9% of the vowels were correctly received. Similarly for the 
consonants, c = 0.735, corresponding to 75.3% correct. The average phone 
score, s = (Zc + U ) / &  was then computed (79.3%) along with an estimate 
of the CVC syllable articulation score S, assuming independent C and 
Vunits. as coc = 0.491. Finally, s3 = 0.499, corresponding to an average 
independent-phone model computed from the average phone miculation s. 

composed of three sounds (triphones): two consonants and 
one vowel; and two sounds (diphones): one consonant and 
one vowel. The class of triphones they used are referred to 
as nonsense “CVC (consonant-vowel-consonant) syllables, 
which account for 34% of all syllables spoken on the tele- 
phone, while the CV and VC diphones each account for 20% 
of the syllables. The three types of syllables account for a total 
of 74% (34+20+20) (p. 94 of [13]). This subset of nonsense 
sounds was viewed as an idealized subset of the language. The 
identification task on this subset was viewed as an idealized 
speech recognition task. 

As shown in Fig. 1, the CVC’s were scored for errors, 
both in terms of the C’s and V’s, and as syllable units. 
The errors were then described in terms of modifications to 
the telephone channel (channel distortion), which in tum was 
characterized in terms of channel bandwidth and signal-to- 
noise ratio. Human phone error rates for nonsense CVC’s, 
under the best conditions, are about 1.5% error (98.5% correct) 

Fig. 2 shows an interpretation of the talker-listener exper- 
iment, modeled as an information-theoretic M-symbol noisy 
channel, where M is the number of phones in the language. 
During World War 11, while Fletcher was applying the ar- 

WI, [151, WI. 

ticulation index theory to pilot-navigator communications as 

Fig. 2. The human acoustic channel is represented here as a hypothetical 
information-theoretic M-symbol noisy channel. Input speech sounds spoken 
by an average speaker are received (heard) by an average listener. An input 
set of spoken phones [s.], labeled by i, are spoken with probability T,. Erron 
occur in transmission as described by a transition probability matrix n having 
elements n,,. The set of received phones is [i5], indexed by j .  

chairman of National Defense Research Committee? Shannon 
was studying the entropy of language and applying it to cryp- 
tography. These studies were fundamental to the development 
of information theory. Shannon came to Bell Labs in 1941. 
It is interesting that some time before 1945 and the time that 
Fletcher retired in 1949, Fletcher was in Shannon’s line of 
manage men^^ 

B .  Context Entropy 
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Context is a powerful force in speech recognition and has 
many levels. A famous example of this is demonstrated by the 
difference between the question “How do humans recognize 
speech?” and the question “How do humans wreck a nice 
beach?” These two sentences can be spoken so that only 
context can distinguish them. In a situation with the proper 
context however, the two could never be confused. 

Context plays an important role in the functional rela- 
tionship between nonsense syllable articulation and word 
intelligibility. This type of context results from the lower 
entropy of words relative to nonsense syllables. If one could 
compute the entropy of nonsense syllables Ns, and of words 
Nw, then 

ns > nw. 
For example, given 20 possible phones, then a triplet of CVC 
syllables would have a maximum entropy of 3 10g2(20) = 13 
bits (assuming a uniform distribution of the phones). It follows 
that the entropy of CVC words must be less than 13 bits, since 
“words” are the subset of CVC’s that have meaning. 

Context can be used across levels. Due to the meaning 
conveyed by a word or sentence, the listener can compensate 
for missing phone information. For example, the sentence 
Cn yu udrstnd the sntnc? is easily understood because of 
context even though all the vowels are missing. Thus, for 
the same channel distortion, words and sentences have higher 
recognition scores than those of syllables, due to their lower 
entropy. 

Fletcher clearly understood this concept and about 1918 
introduced nonsense syllables into telephone speech testing 
to remove the strong influence of context entropy. In doing 
this he greatly simplified the problem he was working on. 
One may study many context questions by working with full 

2He received a citation signed by President Truman for this work. 
’In 1945, the line of management was Fletcher, Director of Physical 

Research: Bode, Director: Schelkunoff, Head; and Shannon. During M I ,  
Shannon worked on entropy of language, which was a field closely related to 
Fletcher’s Articulation Index. However, there is no indication that Fletcher or 
his work influenced Shannon’s thinking in any way. 
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TABLE I 
TABLE OF GENERAL DWINITIONS 

NAME DEFINITION 
Recognition 
Recognition error 1 -recognition 
Context 

Intelligibility 
Context entropy 
Articulation 

Acoustic entropy 

probability of correct sound identification 

indicates a subset of sounds have a prescibed meaning 
measured in terms of entropylphone 
recognition of sounds having context (i.e., words) 
Reduction in entropy due to contextual information is 
the recognition having no context (e.g., nonsense 
syllables) 
Entropy of the sounds evaluated from the confusion 

text or phonetic transcriptions. However, to study the difficult 
problem of acoustic transcription, Fletcher (wisely) decided to 
systematically remove various levels of context. 

By 1929, Fletcher and Steinberg [21] had found a functional 
relation between the nonsense CVC recognition rates and word 
and sentence recognition rates (see also [2]-14) and p. 226 
of [lo]). These relations demonstrate that word and sentence 
error rates can be predicted from the nonsense { C,  V }  error 
rates for  a given speech corpus. Thus Fletcher and Steinberg 
were the first to indirectly quantify the use of entropy in spoken 
language [21], [IO], although they did not use these terms. 

Using sentences with context complicates the intelligibility 
testing, decreases the efficiency of the testing, and increases 
the variability of the results, because context greatly confounds 
the measurement of phone errors. 

C.  Definitions 
Fletcher’s basic approach was to treat the speech units in 

terms of their empirical probabilities. As shown in Table I, 
he defined intelligibility as the empirical probability of correct 
recognition when context is present (e.g., recognition of words) 
and articulation as the empirical probability of correct recogni- 
tion when context is not present (e.g., recognition of nonsense 
syllables) [13]. The articulation error is 1-articulation. A 
phone is defined as a specific sound in the language. We use 
square brackets to specify the phones, such as [s,], where 
i = 1,. . . , M ,  assuming M phones. The phones used are 
defined in p. 95 of [13]. 

111. TIiE ARTICULATION EXPERIMENT 
After about 1918, the databases were formed from statis- 

tically balanced nonsense CVC, CV, and VC syllable source 
lists. The syllable source lists were spoken and the listeners 
recorded what they heard. The list was chosen so that the set 
was closed, namely, all sounds that were recorded were also 
included in the source list. Articulations c and U (see Table 
11) were computed for the phones, and articulation S was 
computed for the syllables, as shown in Fig. 1. Many crews 
of listeners were trained to do the task, and their performance 
was monitored over years. Crew performance was found to 
stabilize within a few months. 

We will assume that [st] is the “called phone, [ O j ]  is the 
“received” phone, M is the number of phones in the corpus, N ,  
the number of times [si] is called, and N ; j ( a )  is the member 
times that [si] is called and [a,] is received. The speech gain a 

was used to vary the speech signal-to-noise ratio (SNR), and 
thus the errors, in a natural manner. Using standard matrix 
notation, i is the row index, and j is the column index. Each 
row corresponds to a different called phone, while each column 
corresponds to a different received phone. Because the set was 
closed, the frequency matrix Nij is square. 

Ni, (a)  
is the number of times the ith phone is called. The empirical 
probability of calling each phone is given by 

From these definitions the ith row sum Ni = 

, M  
= N ~ / / c N , .  

The lists were designed to make the called probabilities 
approximately equal, namely to make ?ri = I /M.  

The empirical probability of hearing [ O j ]  after calling [sj] is 

The matrix N ( a )  defined by elements N i j ( a )  is called the fre- 
quency matrix. The matrix n(a) defined by elements nij(a) 

is called the confusion matrix, or altematively the transition 
matrix. If II were measured for sounds with no context, we 
could also call it the articulation matrix. 

Since every called phone gives rise to a received phone, the 
row sum is unity, namely 

M .. Ea3 = 1 (3) 
j = l  

When the conditions are ideal (a = l), the matrix n is 
close to diagonal, meaning that phone recognition is nearly 
perfect. When the signal-to-noise ratio was very poor (a = 0), 
recognition goes to chance levels. In this case IIij = 1/M, 
since the observers understood that the sounds had equal 
probability, namely that ri = 1/M. 

A .  Results 
Fletcher found that the CVC syllable articulation S ( a )  (the 

probability of correct identification of the CVC syllable) is 
accurately predicted from the phone articulations c(a)  and 
.(a) by the relation 

S ( a )  = c2v. (4) 

This formula reflects the fact that the three sound-units are 
heard as independent sounds, and that to correctly identify the 
syllable, all three sound-units must be correctly identified. 

For example, suppose the CVC is w$. If a listener responds 
with m$, that would be one error of the first C sound-unit and 
the syllable would be scored incorrect. To the extent that the 
above formula for S is accurate, it implies that coarticulations 
of the speech sounds are transformed by the auditory system 
into independent units at a early stage, before context is used, 
since context was not present during testing. 
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B. Fletcher’s Measure of Recognition 
To unify the computations across the various data bases, an 

average {C, V} phone articulation s was computed from the 
composition of {C, V} units in the data base. For example, for 
nonsense CVC’s, Fletcher defined the empirical recognition 
probability of an average phone articulation as .(a) = (2c + 
w)/3. In terms of (2) 

which is the average of the diagonal elements of the transition 
matrix. When a= l ,  they found that sa = S,, < 1. In 
the case of proper (unbiased) guessing when the speech gain 
a = 0, s should be 1/M. Because of (3), the articulation error 
e = 1 - s may also be computed from the sum of all the 
off-diagonal elements as 

where the prime on the index j indicates that the sum does 
not include the diagonal terms along j = i. For the case of 
guessing (a = O), e = 1 - 1 /M.  

After some manipulation it was shown that (4) may be 
approximated by 

s N s3 (7) 

with only a small error [17], [15], (pp. 283-285 of [13]). This 
approximation depends on the experimental variation of the 
relative constant-vowel probability ratio X = c/v. As shown 
in Fig. 3, when Fletcher plotted the syllable articulation S 
against the cube of the average phone articulation error s3, 
he found an almost perfect agreement. A systematic error of 
less than 0.04 was found, as shown in the upper panel of that 
figure. It is not clear if or how they corrected for guessing as 
s becomes small (as a + 0). 

Other Measures of Recognition: Other measures of recog- 
nition besides s and S are interesting. Working with the 
{C, V} sounds, it is possible to compute the acoustic en- 
tropy of the speech corpus. For example, we may define the 
conditional entropy given that phone [s,] was called, treating 
filtering, noise, and the listener as a “channel,” as shown in Fig. 
2. The idea here is to measure the quality of the channel, using 
the estimated transition matrix probabilities as a function of 
the physical attributes of the physical channel, namely filtering, 
the speech gain, and, in the case of hearing impaired listeners, 
the listener’s hearing loss. This conditional entropy is given 
by the row sum 

M 

wj. I [st]) = - En, ,  logz(K,). 
3=1  

This measure is in bits and lies between 0 (perfect recogni- 
tion) and log,(M) (guessing). The conditional entropy of the 
received phone given the called phone is the expected value 

(8) 

Fig. 3. This figure, which has been reproduced from p. 285 of [13], shows 
the relation between S (lower panel) and the emr A S  = S - s3 between S 
and s3 for nonsense CVC’s that have been low- and high-pass filtered. The 
maximum e m r  between S and s3 is about 0.04. It is not clear if these results 
were corrected for guessing (i.e., s(d = 0) = l/M). If the error were zero, 
it would mean that each CVC syllable was, on the average, perceived as three 
independent phone units. For further discussion, see Section n-B. 

of (8), namely the weighted column sum over called phones 
M 

X(i  I s) = 7ri7-qj.j 1 [Sj]). (9) 
i = l  

This quantity is between 0 (perfect recognition) and log,(M) 
(guessing). 

It has long been observed that 
the production of a speech sound is strongly dependent on 
the preceding and following sound. This interdependence is 
called coarticulution. Many speech researchers believe that the 
coarticulation is what makes the speech recognition problem 
difficult. 

Coarticulation is a “production” concept. From the results 
of the syllable articulation experiments (4), one must conclude 
that humans decode syllables as independent phone units over 
time. Fletcher [15], as shown in Fig. 3, and more recently 
Bronkhorst et al. [8] found that under conditions of low noise, 
the phones are perceived independently. 

One might conclude that the problem of robust HSR can 
be split into two problems. First is the problem of decoding 
phones from the acoustic wave form. Second is the problem 
of utilizing context (e.g., entropy) to edit corrections and fill 
in missing information. 

Coarticulation and HSR: 
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This leads us to the next obvious and important question, 
namely, “How do we decode phones?” Important insight and 
a major simplification of this complex problem comes from 
Fletcher’s arriculation index. 

IV. THE ARTICULATION INDFZ 
The tight relation between the syllable and phone articula- 

tion (4) emphasizes the fundamental importance of the phone 
articulation to human speech recognition. Due to its basic 
nature, Fletcher was soon studying the phone articulation s 
for various channel frequency responses and channel noise 
[15]. To do this he used low-pass and high-pass filters on the 
speech! In these studies Fletcher soon found that the partial 
articulations (the articulations for each band) did not sum to 
the wide band articulation. He then showed that a nonlinear 
transformation of the partial articulations would make them 
additive [9]. As described below, the nonlinearly transformed 
articulation defines an articulation index density D ( f )  over 
frequency f. Integration, or summation, over this density gives 
the articulation index A. The articulation index can be viewed 
as a fundamental intemal variable of speech recognition. All 
recognition conditions are determined once A is determined 
for a given context entropy. (Another fundamental intemal 
variable is the context entropy H.) 

As shown in Table 11, we designate the articulations of the 
low- and high-pass filtered sounds as sb(fC,  a) and S H ( ~ = ,  a). 
The cut-off frequency of the filters is given by fc, and the 
parameter a is the gain applied to the speech. By varying the 
speech level, the signal-to-noise ratio of the speech was varied. 
As shown in Fig. 4, SL approaches 0.985 for fc above 8 kHz, 
and 0 for fc below 100 Hz, and SH is 0 for fc above 8 kHz 
and 0.985 for fc below 100 Hz. Both functions are monotonic 
with frequency. 

Fletcher [l], [9] showed that SL + S H  does not sum to s. 
(To motivate the discussion, we now know that for nonsense 
CVC’s, s = S L  + SH - S L S H ,  as will be shown below.) To 
get around this “problem” he proposed finding an invertible 
nonlinear transformation A(s) of the articulation s which 
he called the arricularion index that would make the two 
articulation bands add to one. In other words, he wanted a 
transformation A(s) such that 

A(st(f,, a ) )  + A(SH(fcr a ) )  = A(s(a)) (10) 

for all values of the filter cutoff frequency fc and the speech 
gain a. There was, of course, no guarantee that such a transfor- 
mation should exist, but his intuition suggested that it would. 
Since we are dealing with transformations of probabilities, the 
additivity condition is basically an independence argument. 

He determined this transformation by finding the cutoff 
frequency fc = f: such that 

SL( fc* ,CY)  = . H ( f , ‘ > Q )  (11) 

which is the frequency where the curves S L  and SH cross in 
Fig. 4. He then argued that the two transformed articulations 

41t IS interesting that George Campbell invented the lattice filter to do these 
expenments 

Ffg. 4. This figure is reproduced from [9] and p. 280 of [lo]. Speech was 
low- and high-pass filtered with very sharp filters having a cutoff frequency 
defined by the abscissa. lko  things were measured for each filtered speech 
sound, the RMS level and the articulation. The speech energy for the two 
filter outputs is shown by the dashed lines and the articulations are shown by 
the solid lines. The curve labeled “Articulation H is the same as SH. and 
the curve labeled “Arficulation L is the same as SL. Note how the energy 
curves cross at the 50% pint ,  as they should for two sharp filters. Note how 
the arLiculation curves do not cross at 50% but at 65%. Also, the frequency of 
the ctussover is very different for energy and articulation. The equal energy 
point is at 450 Hz, while the equal anicularion p i n t  is at 1550 Hz. 

must be equal at f:, and therefore must each be 1/2, namely 

A(SL(j,‘, a))  = 0.5A(s(a)). (12) 

By repeating this procedure as a function of the speech gain 
a, he could empirically determine A(s), since the articulation 
.(a) is a function of the speech level. 

A .  What They Found 
Under the conditions that the word corpus consisted of 

nonsense CVC’s (the maximum entropy condition), Fletcher 
found that the nonlinear transformation that gives articulation 
additivity is 

The constant sm, = 0.985 is the maximum articulation and 
emln = 1 - sm, = 0.015 is the corresponding minimum 
articulation error (p. 282 of [13]). If we solve (13) for s we 
find 

S(A) = 1 - et,,,. (14) 

Note that when A = 0, s = 0, and when A = 1, s = smax. 
This equation can also he written in terms of the articulation 
error e = 1 - s, which gives 

e(A) = e l i n .  (15) 

B. The Independent-Channel Model 

Fletcher (following Stewart) then went on to show that 
the phones are processed in independent articulation bands 
(frequency channels), and that these independent estimates of 
the speech sounds in each frequency band are “optimally” 
merged, as given by the following two-band example [15], 
[13]: 

If 10 errors out of 100 spoken sounds are made when only 
band 1 is used, and 20 errors are made when only band 2 is 
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TABLE I1 
TABLE OF SP!XlFIC SYMBOL DEFINITIONS 

SYMBOL DEF‘INITION 
a 
f c  
40) consonant articulation 
.(a) vowel articulation 
.(a) = (ZC + v)/3 
e (a )  = 1 - s 
S L ( f C .  a) 
s H ( f c , a )  
%a) nonsense syllable (CVC) articulation 
Wa) word intelligibility 
I ( a )  sentence intelligibility 

gain applied to the speech 
filter high- and low-pass cut-off frequency 

average phone articulation for CVC’s 
phone articulation error 
s for low-pass filtered speech 
s for high-pass filtered speech 

used, then when both bands 1 and 2 are used simultaneously, 
the error is e = 0.1 x 0.2 = 0.02, or two errors will be made. 

For the two band example, using (10) and (13), we find 

log(1 - S) = log(1 - S L )  + log(1 - S H )  (16) 

which becomes 

1 - s = (1 - s L ) ( 1 -  S H )  (17) 

or in terms of the articulation error e = 1 - s 

e = eLeH. (18) 

This equation is true for every value of fc. The definition 
of n(a) may be extended to the low- and high-pass filtered 
speech case as n ~ (  fc, a) and n H ( f c ,  a). 

Equation (18) says that the articulation errors due to low- 
pass filtering are independent of the articulation errors due to 
high-pass filtering. I interpret this equation to mean that we are 
listening to independent sets ofphone features in the two bands 
and processing them independently, up to the point where they 
are fused to produce the phone estimates. The term feature 
implies the recognition of partial information. This model does 
not tell us how across-channel conflicts are resolved. 

C.  The Articulation Index Density 
As a result of the additivity required by (lo), the nonlinear 

transformation d(s) transforms s( fc, a) into an integral over 
an articulation index density D (  f). This follows if we let each 
term of (10) correspond to an integral of D( f) over frequency, 
namely 

f= 
4 S L ( f c ) )  = J ~ ) d f  (19) 

.. 
000 

The density D( f) may then be uniquely determined from 

From these studies Fletcher was able to derive the density 
over frequency of the phone articulation index D(  f ). This was 

first done in 1921. Frequencies where D ( f )  is large carry the 
greatest speech information. Thus, D is called the importance 
function; it is shown in Fig. 177 and is tabulated in Table 63 
on p. 333 in Fletcher’s 1953 book [13], [14]. 

D .  The Multichannel Model 
Given the concept of the articulation index density, it 

follows that (18) may be generalized to a multichannel ar- 
ticulation band model, namely 

e = e162 . . . eK (23) 

where K is the number of independent articulation bands. 
This model (23) was first proposed by J. Q. Stewart in 1921, 

but was developed by Fletcher (p. 28 1 of [ 131). Thus, it seems 
proper to call it the Fletcher-Stewart multiindependent channel 
(MIC) model of phone perception. It is easy to show that the 
relation between the kth band error e k  and the density is given 
by 

where 

Dk = s,i”” D ( f ) d f .  (25) 

The frequency limits f k  were chosen so that all the Dk’S were 
equal, which means that under optimum listening conditions 
(a near I), Dk = 1/K. 

The number of bands K is frequently taken to be 20, 
which makes each band correspond to 1 nun along the basilar 
membrane. Since Fletcher identified a critical band to be about 
0.5 mm along the basilar membrane, one articulation band 
represents two critical bands. However, I believe that the 
number K was chosen for convenience, and should not be 
taken as a particularly significant number. It has been reported, 
for example, that 10 bands is too few, and 30 bands gives no 
improvement in accuracy over 20 bands. 

It was first observed by Galt, working with Fletcher, that 
the equal spacing of the articulation index density function 
approximately corresponds to equal spacing along the basilar 
membrane since (19) is very similar to the cochlear map 
function, which is the relation between normalized place X on 
the basilar membrane and characteristic frequency F(in Hz) 
along the basilar membrane. The normalized place variable is 
defined as X = ( L  - x ) /L ,  where x is in mm from the stapes, 
and L = 35 mm is the length of the basilar membrane. It is 
frequently expressed as a percent (p. 293 of [13]). From the 
Greenwood human cochlear 

F ( X )  = 165(102’1x - 0.88) (Hz) (26) 

we know that the distance along the basilar membrane, be- 
tween 300 Hz and 8 kHz, is 20 mm. Thus, there is about 
one articulation bandmm corresponding to about 4000/35=114 
hair cells or about 1140 neurons. 

The slope of the cochlear map d F / d X  was found to be 
proportional to the critical ratio K (  f) [I], [11]-[13]. The crit- 
ical ratio K (  f) is an important psychophysical measure of the 
relative bandwidths of our cochlear filters [l], [13]. The ratio 

Authorized licensed use limited to: University of Illinois. Downloaded on November 10,2020 at 07:37:47 UTC from IEEE Xplore.  Restrictions apply. 



ALLEN HOW W HUMANS PROCESS AND RECOGNIZE SPEECH? 573 

F.  Summary 

S m k  dB, where k labels the frequency bands 
In summary, for speech having a signal-to-noise ratio of 

(29) 

d(a) = C&(a) (30) 

1 
K Dk(a) = -SNRk(a)/30 
K 

k = l  rwJwENcY (H2) 

of D(f), the articulation index density, and ~ ( f ) ,  the critical 
ratio, is a measure of the relative speech articulatiodmm or per 
critical band. As shown in Fig. 5,  this ratio is approximately 
uniform over the speech band. These results have been scaled 
so that JD(f) /~( f )df  = 1. 

A Physical Measure of the Articulation Errors: [21] and 
[19] went on to show that the signal-to-noise ratio expressed 
in dB, in each critical band, normalized to 30 dB, determines 
the band articulation index Dk in band k corresponding to the 
band articulation error ek. This relation is given by 

(27) 

The band signal-to-noise ratio SNRk is set to zero when it 
becomes negative, and is set to 30 when it is greater than 
30, Thus the articulation index depends on the signal-to-noise 
ratios in each band rather than the speech energy spectrum. 

It is important 
to clarify the difference between articulation bands and critical 
bands. Critical bands represent filtered and neurally encoded 
signal intensity, and are related to the partial loudness of 
the speech as a function of the position along the basilar 
membrane X. The partial loudness is sometimes called the 
neural excitation pattern [l]. Articulation bands, on the other 
hand, are a measure of partial phone recognition, as a function 
of a tonotopic axis similar, but to equal, to X. Thus a very 
important transformation has taken place between the critical 
band signal and the articulation band signal, namely the neural 
representation of signal intensity has been transformed into a 
measure of partial recognition. We must not assume that this 
is a trivial transformation. If it were, robust ASR would have 
been achieved many years ago. It is worth remembering that 
Fletcher discovered both the critical band and the articulation 
band, and nowhere did he suggest equating them. 

1 
K 

Dk(0) = -sNRk(a)/30. 

Articulation Bands Versus Critical Bands: 

E. The Intelligibility of Words 
When words are used instead of nonsense syllables, the 

syllable errors must be further transformed to determine the 
word intelligibility W(d). This case represents a decrease in 
the speech entropy. These methods were partially worked out 
by Fletcher and Steinberg (91, [18], [15]. Boothroyd described 
similar results using the empirical expression 

W(d)  = 1 - (1 - S(d))? (28) 

where the constant j > 1 depends on the entropy of the word 
corpus and may be empirically determined [2]-[4]. 

A. Implications for Modern Machine Speech Recognition 
Fletcher’s articulation index studies and models have im- 

portant implications to ASR. Typical ASR systems start with 
a “front-end that transforms the speech signal into a “feature 
vector” which is then processed by a “back-end classifier. 
These systems frequently place a heavy emphasis on word and 
language models as a method of increasing the recognition 
scores. 

Because of confusion and misunderstanding based on coar- 
ticulation arguments, only a small amount of research has been 

Fig. 5. Figure showing the ratio of D ( f ) / ~ ( f ) .  This ratio is a measure of 
the phone articulation per critical band. The ratio has been normalized so that 
its area is 1. 

(31) s(d) = 1 - emln 

S(d) = s3 (32) 
(33) 

When SNRk(a) /30  is less than 0 it is set to 0, and when it is 
greater than 1, it is set to 1. The constant j is greater than 1. 

This model has been tested with hundreds of combinations 
of channel parameters and is impressively accurate over a large 
range of channel conditions [151, [191. 

A 

W(A) = 1 - (1 - S(A))?. 

v. THE RECOGNITION CHAIN 
Fletcher’s analysis defines a heuristic model of human 

speech recognition as a layered hierarchy, as shown in Fig. 
6. The acoustic signal enters the cochlea and is broken into 
frequency bands (critical bands) which define the signal-to- 
noise ratios SNRk, where t labels the cochlear frequency 
channel. There are about 4000 inner hair cells along the 
basilar membrane corresponding to a heavily overlapped set 
of cochlear filters. These outputs are then processed by the 
first ‘‘layer’’ which defines the phone features represented by 
the partial articulation errors ek ,  as given by (29) and (24). 
Usually, K = 20 of these bands are assumed, corresponding 
to 1 mm each along the basilar membrane, or one or two 
critical bands. The next layer defines a phone space, measured 
as articulations s found from (31). There are about 20 phones 
per {C, V} unit. The phones are then transformed into syllable 
units having articulation S(a) (32) and then into words with 
intelligibility W ( s )  (33). The approximate number of nonsense 
CVC’s is about 8000. The number of CVC words is much less, 
and could be estimated using data from the tables of Chapter 5 
of [13]. A plot of typical values for these articulation measures 
is shown in Fig. 7. 

The fact that we are able to recognize nonsense words and 
sentences without difficulty makes it unlikely that feedback 
is common or significant between the deeper layers and the 
outer layers. Furthermore, the delay involved in any feedback 
mechanism could create serious “real-time” problems. How- 
ever, this interesting question is open at this time, since we 
really have very little evidence to guide us. 
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Recognition level *___________________..~~~.~~...~~~~..~~~~~... .~~~ 
Cochlea Features Phones Syllables Words 

SN% ek S S W 

Recognition measure 

Fig. 6. Hypothetical cascade of recognition layers, starting with the cochlea. 
The articulation measures shown at the b n o m  are defined in Table II. The 
words along the top describe the physical correlate of the measure. No 
feedback is assumed between layers in this oversimplified model of HSR. 
The first layer, the cochlea, detennines the signal-to-noise ratio in a b u t  2800 
overlapping critical band channels. The next layer extracts features (i.e., partial 
recognition) from the speech in a local manner, as indicated by the network 
wiring. The output of this layer is measured in terms of the IC = 20 or so 
feature errors e k .  Next, the features are mapped onto the M = 20 or so 
phones. This p m e s s  necessarily integrates across the entire tonotopic axis. 
Then syllables and words are formed. 
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Fig. 7. The partial phone articulation density S k  = 1 - e k  along the basilar 
membrane is shown in the upper-left plot, as a function of the signal-to-noise 
ratio SNRk in dB. me partial articulation density is in units of probability 
of correct identification of nonsense phone units per millimeter along the 
basilar membrane. The phone articulation s is shown as a function of the 
average SNW30 in the upper-right plot along with the nonsense CVC syllable 
articulation S. When meaningful sounds (words) are used, the effects of 
context must be taken into account. This effect is shown in the lower-left plot. 
One may also plot one variable against the other, as shown in the lower-right 
plot. 

done on the automatic recognition of nonsense CVC’s. From 
the work of Fletcher and Steinberg, it should be clear that 
the real challenge in machine recognition today is human-like 
performance for phones and nonsense CVC under conditions 
of typical channel distortions. Since the human performance is 
well-known under these conditions [15], [19], nonsense CVC’s 
represent an excellent database. Decreasing the error rates for 
these elementary signals would have a major impact on overall 
system performance and robustness. 

B. Average Phone Entropy 

If we use the phone frequencies given by Fletcher (p. 95 
of [131) and calculate the phone entropy, we find 4.3 bits for 
the initial consonant Ci, 4.5 bits for the V, and 4.1 bits for 

the final consonant Cf. The average phone entropy is then 
4.3 bits/phone, or M = 24.3 = 19.7 possible phones, on the 
average. This entropy would be relevant for telephone speech 
when using a phone recognizer front-end that mats the phone 
string as context free. The entropy would drop as context 
effects are included. 

C .  What Is the Nature of the Phone Feature Space? 
In this section we should like to speculate on the possible 

nature of the phone feature space, given what we know 
about the auditory system. From this point on I shall use 
the term feature to mean 1 bit of partial recognition. This 
definition seems consistent with the notion that a feature is 
a binary concept, namely it describes something that is, or is 
not, present. If M objects are to be described, then it takes 
log,(M) features to describe them. If we interpret the bits 
computed from the phone entropy as features, then there are 
4.3 features/phone, on the average. 

It is common practice to use 20 articulation bands (K = 
20), where each band corresponds to 1 mm along the basilar 
membrane. Thus, on the average, there are 4.3/20 = 0.215 
features/”. Perhaps a more intuitive way of expressing this 
is that there are 20/4.3 = 4.65 “/feature. Since 1 octave 
corresponds to about 5 mm along the basilar membrane, the 
average phone feature density is about 1 feature/octave and 
the average feature length is 1 octave/feature. 

We know that the cochlea (as well as the eye) breaks the 
extemal world down into a tonotopic array of critical bands 
(pixels). It is then the job of the CNS to ‘‘reconsmct” the 
scene from these pieces. There is evidence that this is done 
by making a huge cascade of local binary decisions. Much of 
this decision-making process is done at a subconscious level. 
For example, in a visual scene, the edge of a piece of paper is 
seen to be continuous, not because it is continuous, but because 
that is a rational decision to make given the local pixel inputs. 
Each time the elements are found to be correlated, they are 
fused together (e.g., the edge of the paper looks continuous; 
a musical chord sounds as one; a voice in noise is fused as a 
unit, independent of the noise). 

From this point of view, the actual number of articulation 
bands (K = 20) is unimportant as long as they are not 
underrepresented. What is important is the feature length along 
the tonotopic axis as defined by the local feature extractors. 
Assigning probabilities to the detection of (binary) features 
provides a natural and unique reduction of the data from 
4000 x 20/35=2300 narrow band neural channels to 4.3 (on 
the average) tonotopic feature regions of various lengths, that 
depend on the specific input phone. In this model, the number 
of correlated regions determines the dimension of the space 
and the length of the correlation determines the coordinates 
(e.g., the probability of the feature being present). This model 
is a natural generalization of Fletcher’s (and Munson’s) model 
of tonal loudness which was the first model to propose the idea 
of a neural excitation pattem [l]. 

VI. DISCUSSION 
Somehow the early CNS forms independent error estimates 

of features across frequency, identifies incomplete information 
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and conflicts, resolves the conflicts, and then merges the result- 
ing feature information. For example, if noise fills the upper 
band and clean speech fills the lower band, the articulation will 
be the identical to the case of sharply low-pass filtered speech 
having no energy in the upper band. The presence of noise in 
the upper band confounds a template-based approach which 
does not treat the frequency channels as independent. Since A 
depends on the SNR rather than the energy spectrum, filtering 
the speech does not change the articulation unless the filtering 
reduces the SNR below 30 dB. It would seem that the concept 
of a “perceptual norm” is not only an unobtainable dream, it 
is also a highly suboptimal processing strategy. It is surprising 
that there has been so little discussion about the significance of 
these articulation formulae in the speech recognition literature. 

The partial recognition errors (articulation channels) were 
found to be independent (23). This implies that the CNS is 
processing the cochlear channels over time and extracting 
independent features across frequency. Estimates of the feature 
density give one feature per 5 nun, corresponding to 1 mtave 
in frequency. One octave is about 5 to 10 critical bands since 
each critical band is between 0.5 and 1 mm. Only after the 
features are detected are they merged into estimates of the 
phones. 

The extraction of frequency-local independent features 
might be done by finding correlations between auditory 
(critical band) channels. For example, when noise is added 
to the speech and the SNR across frequency changes, a 
correlation measure between bands will decrease in a manner 
that is consistent with the phone articulation reduction. In 
such a model, a group (1 14 or 1140, depending on whether 
you count inner hair cells or neurons) of critical band filter 
channels would be grouped by the CNS to form one of the 
K M 20 independent articulation channels. 

This view is most strongly supported by “comodulation 
release from masking” (CMR) experiments which demonstrate 
that correlations of neural envelope signals are computed 
by the auditory system. These CMR experiments measure 
the detection threshold of a tone in noise when a flanking 
band of “comodulated” noise is present in the same ear. For 
example, suppose a band of noise from 1-1.4 kHz is amplitude 
modulated by a 20 Hz low-pass noise. A tone is presented in 
the center of the band at 1.2 Wz. The tone is increased in level 
until it is detected by the subject 75% of the time, and the level 
of the tone is noted. Then a second band of noise, say from 
1.6-2.0 kHz is presented, again amplitude modulated by the 
same 20 Hz low-pass noise. When the second noise is added 
to the stimulus, the tone at 1.2 kHz is easily heard, well above 
threshold. The CMR effect shows that the CNS “correlates” the 
two bands of comodulated noise, and as a result “discovers” 
that a tone is present in the lower band. To do this it must 
identify that the bands are correlated, and recognize that the 
tone, present in the lower band, reduces this correlation! 

A .  Effect of the Cochlear Bandwidth at High Levels 
At high sound levels the articulation s “rolls over” (it 

decreases). This effect was modeled by Fletcher as a change 
in the critical bandwidths of the ear, as measured by the 
ratio of the level of a tone to the spectral level of wide 
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band noise at the tone’s detection threshold (i.e., the critical 
ratio ~ ( f ) )  [16], [ l l] ,  [12]). Above about 65 dB SPL the 
critical bandwidth increases by a small amount [12], [19], 
[15], [13]. An analysis of the magnitude of the cochlear 
bandwidth increase is complicated by the uncertainty of the 
signal-to-noise ratio at the output of the cochlear filters at the 
signal detection threshold [l]. The increased bandwidth of the 
cochlear filters leads to a reduction in the frequency resolution 
of the ear and therefore increased channel correlation under 
all signal conditions. Reduced speech recognition performance 
follows. This implies that the actual cochlearfilter bandwidths 
of the ear may be an important variable if we are to attain 
human-like peiformance in ASR. 

B .  Across-Time Versus Across-Frequency Processing 
The template-based approach used in ASR could be called 

an across-frequency processing scheme. It appears that HSR 
is solved using an across-rime processing scheme, with only 
local coupling across frequency. There is some evidence for 
this. First, the articulation channels are independent. Second, 
the human listener is quite insensitive to dispersive (frequency 
dependent) delay, such as all-pass filters. This famous fact is 
frequently referred to as “Ohm’s Law of Acoustics,” which 
claims that the ear is phase-deaf. Room reverberation is an 
important form of degradation that is an example. The rever- 
beration time in a room must reach at least 0.3 to 0.5 seconds 
before one is even aware of its presence, and must be in the 
range of seconds before it becomes a degradation to speech 
communication. Reverberation is typically very frequency 
dependent, with only short delays at high frequencies, and long 
delays at low frequencies. With the feature extraction done 
along time rather than across frequency, the system is much 
less insensitive to this common type of frequency-dependent 
degradation. 

Coarticulation: Across-time processing may also resolve 
the paradox of coarticulation which results from trying to 
assign each phone a spectral template. When one tries to 
associate a spectral template to a particular sound, one is 
assuming (incorrectly) that the timing of the features must be 
synchronous. From psychophysical experiments, we know that 
under many conditions, our ability to perceive the magnitude 
(and even the relative order) of temporal events can be very 
p r .  Phone recognition is most certainly not the synchronous 
timing of feature events, but some more abstract relation 
between the presence and absence of features, and their 
geometrical relations in a multidimensional feature space [6]. 
This transformation may be viewed as a form of “categorical 
perception” [20]. 

VII. SUMMARY 

How do humans process and recognize speech? (Remember 
the rhetorical title of this paper?) We are still looking for the 
answer, and Fletcher’s experiments and analysis tell us where 
to look. The most elementary auditory speech processing 
model (Fig. 6) is a cascade of the cochlea followed by 
the following recognition layers: features, phones, syllables, 
words, sentences, meaning, etc. The basis of this model is the 
recognition data for the various context levels. 
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The most important problem in HSR for those interested in 
ASR is feature and phone perception because this is the part of 
the system that goes from an acoustic signal to the most basic 
speech recognition element. The speech sounds are divided 
into a time-frequency continuum of feature-bearing frequency 
bands by the cochlea. There are about 4.3 independent binary 
features represented along approximately 20 mm of basilar 
membrane. These feature channels form the basis for the 
articulation channel errors e k .  The bands are processed in such 
a way as to robustly extract and isolate the M 20 possible 
elemental sounds for each phone time slot (each C or V) (i.e., 
4.3 bitslphone). 

Equations (IO) and (13) indicate that the articulation error 
information Z defined by 

is additive and defines a tonotopic density because the partial 
recognition errors are independent (23). 

The signal-to-noise ratio of each cochlear inner hair cell 
signal is important to the formation of the feature channels 
since er; is known to depend directly on these SNR’s  rather 
than on the spectral energy. There are many more articulation 
bands than features, and we have estimated that each feature, 
on the average, occupies about 5 mm (1 octave) along the 
basilar membrane. The model is consistent with the idea of 
using correlations between neighboring cochlear channels to 
form the output of the feature layer. If two filter bands were 
not correlated due to a poor SNR, then the correlator output 
would be small. These correlations are undoubtedly generated 
in an early processing stage and form a very basic processing 
system. The auditory system then fuses these features into units 
(phones). This fusion is called an auditory stream, which is the 
subject of the book Auditory Scene Analysis by Bregman [7]. 

To understand how speech is recognized it is necessary to 
systematically control context factors since context is very 
important. This was done by working with a database of 
balanced nonsense CVC, CV, and VC syllables. Syllables 
having context decreases the speech entropy. We know the 
relation between the phone and nonsense syllable error rates 
(4). The phones may be represented as a multidimensional 
features space [6] leading to the idea of the categorical 
perception of these units [20]. 

At each layer, the entropy is decreased as meaning is 
utilized and extracted. By removing meaning or context from 
the speech, we may effectively disable the processing for 
that layer. This allows us to quantify the layer’s utilization 
of the speech’s entropy. Using this method, the recognition 
probability W ( S )  between the words and nonsense syllables, 
due to the word intelligibility, has been empirically estimated. 
The same technique has been applied to quantify meaning in 
sentences. 

Since Fletcher’s theory only attempts to predict the average 
articulation, it does not address the important question of 
exactly how the articulation channel signals are processed 
to form the sound-unit recognition. An interesting clue may 
be provided by the “McGurk effect,” where visual features 
dominate those of the auditory channel. This might be viewed 
as a visual side channel that has an input to certain terms in 

(23) by contributing information to the formation of that subset 
of features that are correlated to the lip or jaw movements. 
Altematively the visual input might directly contribute to the 
feature space of phones. Braida is exploring a multidimen- 
sional perceptual space model in an attempt to model the 
articulation index in terms of what is happening in the CNS 
[51, 161. 

Finally, these measures provide an important knowledge 
database against which we may benchmark the machine rec- 
ognizers, to drive their performance toward that of the human 
listener. 
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