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Cochlear Signal Processing
Jont B. Allen

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

This chapter describes the mechanical function of the cochlea, or inner ear, the
organ that converts acoustical signals into neural signals. Models of the cochlea are
important and useful because they succinctly describe the principles of the operation
of the preneural portion of the hearing system. Many cochlear hearing disorders are
still not well understood, and if systematic progress is to be made in improved
diagnostics and treatment of these disorders, a clear understanding of basic principles
is essential. The literature is full of speculations about various aspects of cochlear
function and dysfunction. Unfortunately, we still do not have all the facts about
many important issues, including how the cochlea attains its frequency selectivity.
However, the experimental body of data has been growing at an accelerating pace
as greater attention has been focused on this and other important and related issues.

Several topics will be covered here. First, the history and concepts behind the
early cochlear models will be described, including extensions that have taken place
in recent years. Next, recent modeling efforts in cochlear micromechanics are de-
scribed. These models are intended to describe the mechanics of the tectorial mem-
brane and the hair cells in greater detail. This leads to a discussion of the difference
between basilar membrane, hair cell, and neural tuning. Finally the success of several
of the micromechanical models is discussed.

FUNCTION OF THE INNER EAR

The purpose of modeling the cochlea is to help us understand how auditory signal
processing is performed. The signals from 30,000 neurons represent the output of
the human cochlea. These neurons encode 3,500 cochlear inner hair cell signals,
which are filtered versions of the sound pressure at the tympanic membrane. In other
words, each hair-cell signal has a limited frequency content, with a frequency spec-
trum that depends on the hair-cell location along the basilar membrane. In the cat,
approximately 20 neurons encode each of these narrow-band hair-cell signals using
a neural timing code, whereby the time between neural pulses carries the information
being signaled into the auditory central nervous system.

We describe the cochlear signal processing that ensues by two separate means.
First, we describe the signal representation at various points in the system. Second,
we refer to models of the auditory system. These models are our most succinct means
of conveying the results of years of detailed and difficult experimental work on
cochlear function. An alternative way of describing our knowledge of the cochlear
function (which we try not to use) would be to describe the multitude of experimental
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results. This body of experimental knowledge has been very efficiently represented
(to the extent that it is understood) in the form of mathematical*models. When the
experimental results are at variance with the model or when no model exists, the
model is not a useful description, and the more basic description, using the exper-
imental data base, is necessary. Several good books and review papers are available
that make excellent supplemental reading (3,29,36,40,41,46).

For pedagogical purposes the inner ear may be functionally divided into several
subcomponents. From Figs. 1 to 3, three major divisions may be defined and are
classified here as: (a) macromechanics, (b) micromechanics, and (c) transduction.

Macromechanics describes the fluid motions of the scalae and assumes for analysis
purposes that the basilar membrane is frequently treated as a dynamic system having
mass, stiffness, and damping. Micromechanics describes the details of the motion
of the organ of Corti, the inner and outer hair cells, the tectorial membrane, pillar
cells, and the motion of the fluid in the space between the reticular lamina and the
tectorial membrane. Transduction describes the electrochemical response of the
inner hair cell to basilar membrane motions. This topic, however, is beyond the
scope of this chapter.

There is a great deal of diverse opinion in the literature about several critical issues
because of experimental uncertainty. For example, it is very difficult to observe
experimentally the motion of the basilar membrane in a functionally undamaged
cochlea. Furthermore, questions regarding the relative motion of the tectorial mem-
brane to other adjacent structures are largely a matter of conjecture. Such questions
are therefore at present best investigated by theoretical means. As a result, a variety
of opinions exist as to the detailed function of the various structures.

On the other hand, firm and widely accepted indirect evidence exists on how these
structures work. Since this indirect evidence takes on many forms, such as mor-
phological, electrochemical, mechanical, acoustical, biophysical, these data are
probably best related via a model.

COCHLEAR MACROMECHANICS

The first widely recognized model of the cochlea, attributed to Helmholtz (14), is
described in an appendix of his book On the Sensations of Tone, which was first
published in 1862. Helmholtz likened the cochlea to a bank of highly tuned resonators
that are selective to different frequencies, much like a piano, where each string
represents a different place on the basilar membrane. In fact, the model he proposed
was unsatisfactory because it omitted many important features, the most important
of which is the cochlear fluid that couples the mechanical resonators together. -

It was not until the experimental observations of von Békésy in 1928 on human
cadaver cochleas that the nature of the basilar membrane traveling wave behavior
was unveiled. Typical fluid motions in the cochlea are shown by the arrows in Fig.
1. Figures 2 and 3 show an expanded view with details of the cochlear duct. Von
Békésy found that the cochlea is like a linear ““dispersive’’ transmission system in
which different frequency components that make up the input signal travel at dif-
ferent speeds along the basilar membrane, thereby isolating those various frequency
components at different places along the basilar membrane. He described this dis-
persive wave as a ‘‘traveling wave,”’” which he observed using stroboscopic light in
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duct
vestibuli Scala ®

FIG. 2. As we move into the inner ear, we see the various fluid-filled chambers. The cochlear nerve
forms the central core of the cochlea and extends into the Vllith nerve, which also comprises the
facial and vestibular nerve bundles. The cochlear duct, defined as the space between Reissner's
membrane and the basilar membrane, is at an 80-mV potential This potential is important in the
transduction process. (© 1940, Max Brddel from 1940 Year Book of the Eye, Ear, Nose and Throat.)

a dead human cochlea, at sound levels well above our pain threshold, i.e., 120 dB
SPL. and above. Sound levels of this magnitude were required to obtain displacement
levels that were observable under his microscope. These pioneering experiments
were so difficult and important that von Békésy received the Nobel prize in 1961
for his experimental observations.

Through the years these experiments have been greatly improved, but von Bé-
késy’s fundamental observation of the traveling wave still stands. His original ex-
perimental results, however, are not characteristic of the responses seen in more
recent experiments in several ways.

Today we find that the traveling wave has a more sharply defined location on the
basilar membrane for a pure tone input than observed by von Békésy. In fact, ac-
cording to more recent measurements, the response of the basilar membrane to a
pure tone can change in amplitude by about five orders of magnitude per millimeter
of distance along the basilar membrane. To describe this response, it is helpful to
call on one of the early models of macromechanics, the transmission line model,
which was investigated by Zwislocki (44,45) and later claborated by Peterson and
Bogert (28). This model is also frequently called the one-dimensional model.
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FIG. 3. We show here a more detailed cross section of the cochlear canal with tectorial membrane,
cochlear nerve, basilar membrane, and other structures of significance. (© 1943, Rasmussen.)

THE TRANSMISSION LINE MODEL OF THE COCHLEA

Between the years of 1931 and 1950, Ranke (30) formulated the first hydrodynamic
models of the cochlea. Ranke’s main contribution was his studies of the fluid effects
in the cochlea. He came to many important and fundamental findings, but his work
remained either greatly misunderstood or ignored and is only now beginning to be
appreciated (39,41).

The transmission line model of Zwislocki (45) was first introduced in 1945 as a
simplified version of the more complete formulation of Ranke (30). Zwislocki’s the-
ory was more easily evaluated, but, as Ranke has pointed out (30), it was not as
accurate as the more complete theory. A modern version of the Zwislocki model is
shown in Fig. 4. The stapes input pressure pi, is at the left, with the input velocity
Vin, @8 shown by the arrow, corresponding to the stapes velocity. This model rep-
resents the mass of the fluids of the cochlea as electrical inductors. Frequently
electrical circuit networks are useful in describing mechanical systems. This is pos-
sible because of an electrical to mechanical analog that relates the two systems of
equations, and the electrical circuit elements comprise an accepted standard for
describing these equations owing to their frequent use. From the circuit of Fig. 4,
it is possible to write the equations that describe the system, and many engineers
and scientists find it quicker to read these circuit diagrams than to interpret the
equations.

Different points along the basilar membrane are represented by the cascaded sec-
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FIG. 4. The most commonly exploited basilar membrane-cochlear model is the transmission line
model. In this model the inductors represent the mass of the cochlear fluid (series elements) and
the basilar membrane mass (shunt inductors). The inductor values are frequently assumed to be
independent of their position along the length of the cochlea. The stiffness of the basilar membrane
is represented by the shunt capacitors. The stiffness is position dependent and is usually assumed
to vary exponentially with position. The basilar membrane is stiffest (smallest capacitance) near the
stapes. Thus the resonant frequencies of the shunt elements, taken in isolation, are largest at the
stapes (base) and smallest near the helicotrema (apex). This model, called the transmission line
model or one-dimensional model, has been an important research tool since it was introduced by
Zwislocki in 1948 (44). The model does not have as sharp a high frequency cutoff as two- and three-
dimensional models. However, it does capture many of the essential features of the system ina
qualitative way, such as the traveling wave observed by von Békeésy.

e 0 0

tions of the transmission line model. Thus the position along the model line corre-
sponds to the longitudinal position along the cochlea. The series (horizontal) induc-
tors represent the fluid inertia along the length of the cochlea, and the elements
connected to ground (the common point along the bottom of the figure) represent
the mechanical (acoustical) impedance of an element of the corresponding section
of the basilar membrane. Each inductor going to ground represents the mass per
unit length of the basilar membrane section, whereas the capacitor represents the
compliance (stiffness) of the section of basilar membrane. The compliance is believed
to vary systematically with a stiffness that decreases exponentially along the length
of the cochlea. Thus each piece of basilar membrane is tuned to a different frequency,
since the stiffness changes with position. For convenience, we assume here that the
mass of the basilar membrane remains constant along its length, which roughly
speaking, seems to be the case.

During the following discussion it will be necessary to introduce the concept of
impedance, which may be foreign in its most general form, but is actually a simple
concept. Impedance is defined under conditions of pure tone stimulation; thus imped-
ance is a function of frequency. For example, the impedance of the tympanic mem-
brane (TM) is defined as the pure tone pressure in the ear canal divided by the
resulting TM volume velocity (the velocity x the area of motion). The pressure and
velocity referred to here are conventionally described by complex numbers to ac-
count for the phase relationship between the two. Other common impedance defi-
nitions are the voltage/current ratio in an electrical circuit, and the force divided by
the velocity in mechanical systems.

To understand the inner workings of our circuit of Fig. 4, let us assume that we
excite the line at the stapes with a sinusoidal current of frequency f. Because of
conservation of charge (charge cannot be created or destroyed in this circuit), the
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total current through the basilar membrane must equal the current at the stapes.
The physical law that we are modeling is not conservation of charge, since the
cochlea is not an electrical circuit, but conservation of fluid mass or, equivalently,
conservation of the fluid volume within the scalae since the fluid is incompressible.

When the stapes is displaced, thereby producing a fluid volume displacement in
the upper scala (Figs. 2 and 3), the net volume displacement of the basilar membrane
must displace an identical volume. Simultaneously, the round window membrane
connected to the scala tympani must bulge out by an equal amount. In practice the
motion of the basilar membrane is quite complicated. However, the total volume
displacement of the basilar membrane, at any instant of time, must be equal to the
volume displacement of the stapes or of the round window membrane.

Consider next where the fluid current v;, will flow or where it can flow. For a
given input frequency, the basilar membrane impedance has a minimum at one point
along the length of the cochlea. The impedance of interest here is that of each group
of three elements in the series in Fig. 4, i.e., the inductor-capacitor-resistor com-
bination going to ground at each point along the length of the cochlea. These three
elements in this configuration have special significance because at one frequency
the impedance of the inductor and capacitor cancel each other, and the only imped-
ance element remaining is the impedance (resistance) of the resistor. Thus, at one
point along the length of the cochlea, for a given frequency, the impedance is small,
namely that point where the basilar membrane compliance reactance cancels its mass
reactance. This point is called the resonant point. At that point the basilar membrane
appears to have a hole in it (e.g., the flow resistance is all that remains of the
impedance). To the left of the resonant point, the basilar membrane is increasingly
stiff (having a large capacitive impedance), and to the right of the resonant point,
the impedance is a large mass reactance (inductive impedance). In fact, in this region
the impedance is largely irrelevant since little current will flow past the hole. Thus
the fluid current has maximum flow basal to where the impedance has its minimum.

Of course the above description is dependent on the input frequency f, since the
location of the hole, or impedance minimum, is frequency dependent. If we were
to put a pulse of current in at the stapes, the highest frequencies that make up the
pulse would be filtered out near the stapes, whereas the lower frequencies would
propagate down the line. As the pulse travels down the basilar membrane, the higher
frequencies are progressively removed, until almost nothing is left when the pulse
reaches the right end of the model (the helicotrema end or the apex of the cochlea).

From this description it is possible to understand why the various frequency com-
ponents of the signal are mapped out on the basilar membrane.

Let us next try a different mental experiment with this model. Suppose that the
input at the stapes were a slowly swept tone or chirp. What would the response at
a fixed point on the basilar membrane look like? In Fig. 5, we show the model
frequency response magnitude of the basilar membrane. This is the ratio of the basilar
membrane displacement at one point along its length (the output) to the stapes dis-
placement (the input), as a function of the frequency f at the input. The response
is a bandpass response, with a shallow low-frequency slope and a very sharp high-
frequency slope. We see in Fig. 5, that the maximum relative amplitude of vibration
for the particular point chosen was at 1 kHz.
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FIG. 5. When we view the model at a given place on the basilar membrane as a function of fre-
quency, the response is found to be a bandpass filter. The slope on the high-frequency side of a
real cochlea is place dependent and varies from 50 dB/octave for a low-frequency place, near the
helicotrema, to more than 500 dB/octave for a high-frequency place in the base. This latter slope
would give a 42-dB change in output for a semitone change in frequency (a change corresponding
to going from C to C# on a musical scale). By comparison, the slope for the model on the low-
frequency side of the model filters Is quite shallow and between 12 to 18 dB/octave.

INADEQUACIES OF THE ONE-DIMENSIONAL MODEL

The transmission line model was a most important development since it was in
agreement with the experimental evidence of the day, and it is based on a simple
set of physical principles, i.e., conservation of fluid mass and a spatially variable
basilar membrane stiffness. In fact, this model was the theory of choice until im-
proved experimental observations were available in the late 1960s and early 1970s.

In 1976 Zweig and colleagues pointed out that accurate, but approximate, so-
lutions for the transmission line equations could be found by the use of a method
in physics called the ‘“WKB’’ method (41,43). As further results became available,
it eventually became clear that the one-dimensional transmission line theory was
not totally satisfactory, since that theory did not agree with the more detailed and
complete descriptions derived from a more rigorous analysis. This point was first
made by Ranke (30), and again much later by Lesser and Berkley (23). It is now
possible to compute the response of a two-dimensional (5) and even the response
of a three-dimensional geometry (9). As the complexity of the geometry of the models
approached the physical geometry, the solutions tended to display steeper high fre-
quency slopes and therefore increased frequency selectivity.

A great deal of neural data from the VIIIth nerve is available that defines quite
precisely the input—output properties of the cochlea at threshold levels. However,
since the signals undergo significant transformations between the basilar membrane
and neural measurement point, one cannot directly compare neural response curves
with the basilar membrane model, at least not without careful consideration. We
ultimately seek a model that accurately describes the 3,500 human inner hair cell
outputs or the 30,000 neural signals.

What is important is that the frequency response, as computed by the transmission
line model of the basilar membrane motion, is quite different from the response as
estimated from the nerve fiber measurements. The difference can be on the order
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of 20 to 40 dB (20 dB is a factor of 10, and 40 dB is a factor of 100) and appears to
be even greater under some conditions. Thus, when the two-dimensional models
showed sharpened responses relative to the transmission line model, the hope was
that these more detailed models would converge to the response measured in the
nerve fiber. Although a significant increase in sharpness was found, the desired
convergence has not occurred.

NONLINEAR EFFECTS

A second area where the existing one-dimensional theory is inadequate follows
from the nonlinear phenomena that have been experimentally observed, such as:

1. the frequency-dependent response-level compression as first observed by
Rhode (31,32) in the basilar membrane response;

2. the frequency-dependent response-level compression as observed by Russell
and Sellick (34) in the inner hair cell receptor potential;

3. the frequency-dependent response-level compression as observed by Kiang and
Moxon (20), Allen and Fahey (4), and others, as measured neurally in response
to a second subthreshold tone [this is a form of two-tone suppression (35)];

4. distortion components generated within the cochlea that have been measured
by Goldstein and Kiang (12), Fahey and Allen (11), and others.

Since the transmission line theory is a linear theory, many researchers have studied
ways of making the cochlear models nonlinear in order to study the numerous non-
linear effects (13,21). These models are still in the developmenal stage; therefore it
is necessary to describe some of the data that they are trying to model rather than
the models themselves.

The Basilar Membrane Nonlinearity

One of the most interesting of these nonlinear effects was first observed by Rhode
(31,32) when he measured the input-output characteristics of the basilar membrane
as shown in Fig. 6. He found the basilar membrane displacement to be related to
the stapes displacement in a highly nonlinear fashion. For every 4 dB of level increase
on the input, the output only changed 1 dB. This compressive nonlinearity was
dependent on frequency and only occurred near the most sensitivity frequency for
the point on the basilar membrane that he was measuring (e.g., the tip of the tuning
curve). For other frequencies the system was linear, that is, 1 dB of input change
gave 1 dB of output change for frequencies away from the best frequency. This
nonlinear effect was highly dependent on the health of the animal and would dis-
appear or not be present at all if the animal was not in its physiologically prime state.
One interpretation of this nonlinear effect is that of a level- and frequency-dependent
gain (amplification) that increases as the input level is reduced. From Fig. 6A it
would appear that Rhode found approximately 35 dB excess gain at 7 kHz for 55
dB SPL relative to the gain at 105 dB SPL.
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gg z % The Receptor Potential Nonlinearity
g5 B o
£ g gg In 1977, Russell and Sellick (34) found a similar result in the receptor potential of
E%j@ ‘G the inner hair cell of their guinea pig preparation—a frequency-dependent, com-
S5&¥® pressive, nonlinear effect (Fig. 7). These two independently measured findings, at
o o c . ) D ) &1 0 g :
guay different points in the system, give C?Gdlblllty to the hypothesis that the basilar
J &® B g membrane response is inherently nonlinear and that at low-sound-pressure levels,
& E E s po the basilar membrane displacement is being amplified in a frequency-selective man-
o 5 g’f 8 ner, producing the narrow-band tips on the tuning curves of high frequency neurons
2 £= i;&j at low levels (8). If this is the case, then there should be a correlate of this phe-
= f_i g c:'_\; b nomenon in the neural signal. In Fig. 8 we see the effect of adding a low-frequency
IS %:Eg bias tone, below the neurons threshold, on the frequency response of a neuron
. © 5 § E (4,11,20). Such a family of neural tuning curves are qualitatively similar to the re-
; g % = % sponses found by Rhode (32) and Russell and Sellick (34).
T SwdE
Echa .
Esge - A Nonlinear Paradox
782
§ 2 ;g It is interesting to note here the paradox between the volume conservation law
SEpgex and the nonlinearity found by Rhode (32). The first law says that the volume dis-
§ 2 E 2 placement of the basilar membrane must be equal to the stapes volume displacemer}t
- E,: at each instant of time. Rhode observed that the basilar membrane displacement is
& oE® not proportional to the input displacement but appears to have excess gain near the
gigg best frequency. This implies that the traveling wave must redistribute along the
2 %E 2 basilar membrane length, as a function of the input level, in a highly constrained
2T =) manner. This in turn would require that the neural phase must change with level,
DE::T:% which in general is not found below 4 kHz (2). One way out of this paradox is to
“9_‘&’-55 add an extra degree of freedom between basilar membrane motion and hair cell
EEE N excitation. A second approach is to note that the experimental evidence for the
52,2 nonlinear excess gain is all above 4 kHz, and therefore perhaps the excess gain is
< gig% not present below 4 kHz, where the neural phase data have been measured.
T gele
z,z' «g E %g TWO-DIMENSIONAL COCHLEAR MACROMECHANICS
w ..":.. -E = .
a £ 585 In this section we return to the linear models and try to give a bit of the flavor of
e =082 , the extended hydrodynamic theories of cochlear mechanics, so that the reader may
= o E better appreciate how and why they represent an improvement on the transmission
o> 2 9 .
g g g8 2 line thepry. ‘
£2%380 The first step toward a more manageable theory was taken by Ranke (30) in 1950
S= 8T S in what he called a ‘“‘short-wave’’ theory. Short-wave theory is most accurate near
§§ :_E 2 § the cutoff frequency, whereas long-wave theory (the one-dimensional model is a
E EE(% g long-wave theory) is best basal to the cutoff frequency (39,41). Ranke’s attempts
é BT were historically significant (39,41) but never actually developed into a useful theory
S %g % g for several reasons. For example, it is not known how to optimally interface the
5 Eca E long-wave model to the short-wave model, since some sort of matching procedure
E23LE is required.

Then in 1972, Lesser and Berkley (23) proposed a rectangular box model of the
cochlea in which the scalae were straight and the cochlea was assumed to be sym-
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FIG. 7. Russell and Sellick (34) found a nonlinear and frequency-dependent effect in the receptor
potential similar to that found by Rhode for the basilar membrane (32). In (A) we see the sound-
pressure level, in dB, required to obtain 2, 5, and 10 mV of receptor potential in an inner hair cell.
The format of this figure differs from that of Rhode in that the response is not nermalized by the
input sound level. In (B) we see curves similar to Rhode's that show nonlinear compression of the
response. Not shown are the rectifying effects of the cilia, which produce a large DC component
in the inner hair cell response.
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FIG. 8. When the response of a neuron is measured in the presence of a second (suppressor) tone
we see that it may have a strong attenuation effect, even though the suppressing tone produces
no response when present alone. The symbols define the frequency and level of the suppressor
tone that was presented while the tuning curve was measured. When the suppressor-tone level was
increased, the threshold of the tuning curve increased in a frequency-dependent way. The lowest
threshold tuning curve was measured with the suppressor tone turned off. One interpretation of
this effect is that at low levels of input sound pressure, the extra basilar membrane gain (as de-
scribed, for example, in Fig. 6) is high. When the suppressor tone is present, it suppresses the extra
gain, just as a high-level signal does in Fig. 6. According to this model, the suppressor signal does
not give rise to an output when presented alone because of the high pass filtering that results from
the tectorial membrane resonance model as described in Fig. 18C.

metric about the basilar membrane. This geometry is shown in Fig. 9. A main point
of their paper was to demonstrate the importance of extending the models to two
dimensions because of the effect of this extension on the solutions, a point that had
been made years earlier by Ranke (30). Their line of reasoning inspired research
that kept people busy computing for at least 10 years. As mentioned, via numerical
methods, we have now moved beyond the two-dimensional formulation into the
realm of three-dimensional models. More time is needed to evaluate fully the sig-
nificance of these more detailed calculations and models, but it presently appears
that they alone do not close the gap, as was originally hoped, between model and
experiment. Thus the most important problem that still remains unsolved in cochlear
theory is explaining the sharpness of tuning of the neurally measured response.
Although the two-dimensional models brought the neural data and model calculations
into agreement on the high-frequency side of the tuning curve, they did not improve
the match on the low-frequency side. The most recent experimental measurements
either indicate or are consistent with a 20-dB difference between basilar membrane
responses and neural responses on the low-frequency side of the tuning curve. Such
a transformation will be discussed next.

Cochlear Micromechanics

Micromechanics refers to the mechanics of the organ of Corti. The most commonly
accepted description of the motion of the organ of Corti was proposed by ter Kuile
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FIG. 9. This figure shows the traveling wave at one point in time on the basilar membrane. Because
of the dispersive nature of the basilar membrane, a wake appears behind the main pulse. This pulse
also becomes broader as it travels down the basilar membrane owing to the attenuation of the
higher frequency components. (From ref. 43.)

in 1900 (22). His concept is shown in Fig. 10 where we see how he proposed that
the displacement of the basilar membrane could drive the hair cells in a radial mode
of excitation. In Fig. 11 we see a similar description of this mode of excitation from
Allen (1). A simple analysis of the model reveals that the vertical motion (the y
direction) of the basilar membrane is linearly related to the radial shearing motion
(the z direction) seen by the cilia of the inner hair cells, which are known to be the
transducers that sense the motions of the basilar membrane. Thus the model of ter
Kuile is equivalent to a lever that linearly converts the vertical basilar membrane
motion into radial shearing motions appropriate for the excitation of the inner hair
cells. (The word motion is used to avoid the important question of whether velocity
or displacement is the actual inner hair cell excitatory stimulus.)

The ter Kuile model seemed adequate as a first step, but several important prob-
lems remained. First, there have been no direct observations to confirm the ter Kuile
model nor are there likely to be any in the near future, because of the inherent
difficulty in making observations of such small motions in such difficult places.
Second, we cannot yet be sure, given the present experimental data, if the neural
and basilar membrane responses are in agreement with each other, as described in
the previous section. It was hoped that a simple modification of the ter Kuile model
might bring together the various theories and the experimental data. We will argue
this possibility here.

Basilar Membrane versus Neural and Hair-Cell Tuning

At this point it is again necessary to remove ourselves from the models and look
at some experimental data in order to understand the nature and magnitude of the
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FIG. 10. In 1900, ter Kuile (22) first de-
scribed his model of how the vertical
displacement of the basilar membrane
is transformed into a radial shearing
required to drive the inner hair cell
cilia. At that time it was generally as-
sumed that the tall cilia of each inner,
hair cell was connected to the tectorial
membrane. It is now generally believed
that inner hair cells are not driven di-
rectly by the tectorial membrane, but
are dragged by the surrounding fluid
that is in phase with the displacement.
This would happen because the vis-
RETICULAR cous boundary layer (a thin fluid layer
LAMINA where viscous forces dominate) is
\ greater than the 6-pm distance be-
tween the tectorial membrane and the
S top surface of the hair cells (this sur-
< face is called the reticular lamina). As
a result, the relative shear of these two
surfaces acts as a mechanical resistor,
Po. or dashpot, as it is referred to in me-
chanical terms. The mechanical equiv-
‘ alent of the entire system is a lever, or
—‘!"‘-".._--,:==--=v electrically, it is a transformer. (From
__—--—--"-"‘"'i S et e rof. 1)
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discrepancy between the mechanical tuning of the basilar membrane and neural
signal. In Fig. 12 we see tuning responses from Sellick et al. (37) of the basilar
membrane as compared with a neural measure, where the responses differ by ap-
proximately 10 to 20 dB on the low-frequency side of the response.

The voltage in the inner hair cell was first measured by Russell and Sellick (34).
This voltage, called the receptor potential, is tuned like the neuron. In a later paper,
Sellick et al. (38) show much more detail, as seen in Fig. 13. These results consistently
show a difference on the low-frequency side of the characteristic frequency. In the
summary of their 1983 paper (38) they stated: ‘‘In conclusion, a demonstration of
inner hair cell tuning at the level of the basilar membrane continues to elude us.”

Robles et al. (33) also have compared basilar membrane tuning with a neural
measure. Their summary result is shown in Fig. 14. Again on the low-frequency side
of the tuning curve, they find a difference, but in their case, the difference is in the
form of a large variance, which they indicate by error bars (see the displacement
response at 2.8 kHz). It is interesting to note that in the frequency region near 1.75
kHz the neural signal is less sharply tuned than either of the mechanical measures,
an observation unique to all such experiments.’

Is the difference between basilar membrane, neural, or hair cell measures signif-

1 The measurements of basilar membrane motion by Khanna and Leonard (18) are not direct compar-
isons with neural or receptor measures. As a result of the normalization procedure used by them and the
ear canal standing wave they report (19), their data are not a direct test of this question. Furthermore,
they have not observed the nonlinear compression as seen by Rhode (31,32), Russell and Sellick (34),
Sellick et al. (37,38), and Robles et al. (33).
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FIG. 11. We show here a labeled three-
dimensional representation of the pre-
vious figure (a) and compare it with a de-
tailed labeled drawing of the organ of
Corti (b). The inner hair cells seen in (b)
are the transducers that signal the central
nervous system (CNS). The purpose of the
outer hair cells is still unknown other than
the obvious structural one. The cilia
length of the outer hair cells define €, the
subtectorial space. The neurons con-
nected to the outer hair cells are for the
most part efferent neurons. It has been
shown that the CNS can modify, to some
extent, the mechanical properties (e.g.,
the stiffness) of the outer hair cell cilia.
The inner hair cells on the other hand ap-
pear to be passive displacement detectors
that input to the afferent primary neurons.
(From ref. 1.)
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yet be sure of the answer to this important question. At present the Neely and Kim
(26) model accounts for neural tuning data, or receptor potential data, for neurons
tuned above 5 kHz. This model assumes that basilar membrane tuning is equal to
neural tuning. The Allen model (1,3) describes neural data for frequencies below 5
kHz, but in that model, neural and mechanical tuning differs by approximately 20
dB one-half octave or so below the best frequency. Thus two micromechanical

1nel models that make quite different assumptions have been shown to fit tuning data in
o different frequency regions. Until the experimental questions are resolved, it seems
’se°n that this theoretical question must remain open.

Cells of MICROMECHANICAL MODELS

Claudius

We next discuss two classes of theories that attempt to model the experimentally
observed frequency selectivity. The first is based on the idea that the tectorial mem-

s brane vibrates at its own resonant frequency, near the resonant frequency of the

basilar membrane. In 1980, different versions of this resonant tectorial membrane
approach were independently proposed by Zwislocki and Kletsky (48) and Allen (1).

M . ) ] . .
BaBS"a, The second is the theory of Neely and Kim (26), which calls on the idea of an active,
membrane or negative resistance, basilar membrane. Most recently, Neely and Kim (27) have

published a more comprehensive theory in which they merge the resonant tectorial
membrane model of Allen (1) with their active basilar membrane theory.

Zwislocki’s Tectorial Membrane Models

Zwislocki (46) has proposed a number of tectorial membrane models for sharpening
the basilar membrane response. In 1979 he and Kletsky (47) proposed a model for
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FIG. 14. Comparison of mechanical and neural response measurements. Both the displacement
(@) and the velocity (C) are shown for comparison. The neural measurements (broken line) and the
basilar membrane displacement are shown with error bars that represent one standard deviation
of the measurement. What is unusual about this comparison is that the neural response is less
sharply tuned than either of the mechanical responses. (From ref. 33.)

sharpening based on longitudinal smoothing by the tectorial membrane, which re-
sulted from the longitudinal mechanical properties of the tectorial membrane, fol-
lowed by a difference that resulted from the usual ter Kuile shearing motion at the
inner hair cells. With some simple analysis, one may show that this model is similar
in its effect to the spatial difference model proposed by Hall in 1977 (13). This model
is not, however, a resonant tctorial membrane model.

In 1980, Zwislocki and Kletsky (48) proposed two new approaches to this problem,
which they called models I and II. Model I is a resonant reed that is mass loaded.
The resonant system is meant to represent the tectorial membrane mass and the
stereocilia stiffness.

vl
]

FIG. 13. This figure summarizes one of the major problems in hearing research today, namely the
observed difference between the measured basilar membrane frequency response and hair cell
measured frequency response. The problem is that most measurements of basilar membrane fre-
guency response are not as sharply tuned as the hair cell responses. A,B,C: Measurements of the
motion of the small Mossbauer source placed on the edge of the basilar membrane compared with
the isoamplitude curve at 0.9 mV inner hair cell d.c. receptor potential (O). Basilar membrane iso-
velocity curve at 0.04 mmisec (X). Basilar membrane isodisplacement curve at 3.5 A (continuous
curve). D,E,F,G: As for A, B, C but with the small source placed in the middle of the basilar membrane.
(From ref. 38.)
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This model of excitation distinctly differs from the model of ter Kuile, since there
is no analog of the spiral limbus-tectorial membrane coupling. Their model differs
from that of Allen (1) in exactly this way, since in Allen’s model, the radial stiffness
of the tectorial membrane was specifically taken into account in a functionally sig-
nificant way. In Allen’s model, the coupling element plays an important role in the
excitation of the cilia. As a result, the shape of the frequency response owing to the
radial resonance in Allen’s model is quite different from that measured by Zwislocki
and Kletsky (compare Fig. 18C with Fig. 2 of ref. 48). In summary, these two systems
are not isomorphic.

Zwislocki and Kletsky’s model II (48) seems to be a partial joining of the spatial
smoothing model (47) and model I described above. This model consists of a parallel
bank of resonating reeds tuned to slightly different frequencies. The reeds are con-
nected, along the longitudinal axis, with a nonlinear elastic medium that mechanically
couples them. Again, as in model I, this system has no spiral limbus analog. The
model system is shown in a photograph in the original paper, along with some ex-
perimental results showing the suppression effects they saw of one tone on a second.
Both models I and II are described as nonlinear models, but only the first is a
sharpening model.
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FIG. 15. A model assumption that allows one to match neural tuning data is to introduce a spring,
or elastic element, in the tectorial membrane (element kr of the figure). The addition of this element
gives rise to a response cancellation owing to resonance in the response function describing the
relation between the basilar membrane and the shear seen by the hair cells. This may be shown
by analyzing the electrical equivalent circuit given in the lower part of the figure. (From ref. 1.)
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Allen’s Tectorial Membrane Model

In Fig. 15 we see a model extension of the ter Kuile model where the tectorial
membrane is given a new degree of freedom to vibrate in the radial direction (1),
depicted here as the z direction. On the low-frequency side of the tuning curve for
this model a partial cancellation of the shear motion occurs at the site of the inner
hair cells, relative to the up-down motion of the basilar membrane. This cancellation
is a result of the added degree of freedom (the elastic tectorial membrane element
labeled k). This cancellation could account for the difference frequently observed
between basilar membrane motion and neural response below the characteristic fre-
quency. In Fig. 16 we show cat neural tuning data for several neural units, and in
Fig. 17, the model result using the linear two-dimensional macromechanical model
coupled to the resonant tectorial membrane micromechanical model (3). In the model
calculation we have held the model output constant and plotted the resulting input
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FIG. 16. We show here six low-threshold tuning curves from the cat that are equally spaced on the
log-frequency axis. Only units having characteristic frequencies between 100 Hz and 4 kHz are
displayed because this is the important frequency range for speech communication. No similar data
are available for humans. However, all known mammals give similar results. Note the amplitude
range of the plot that covers a 10° range or 100 dB.
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FIG. 17. The cochlear and middle ear models are used to simulate the ear canal pressure for a
constant output, which here was assumed to be the shear velocity of the tectorial membrane-
reticular lamina. The model calculation was done in the frequency domain with a linear two-di-
mensional cochlear model. The basilar membrane micromechanical model is that defined in Fig.
15.

pressure in the ear canal. Intermediate model results (not shown) for the cochlear
input impedance and the cochlear microphonic also agree with experimentally ob-
served results.

In Fig. 18 we show four measures from the model as a function of position along
the basilar membrane, for six different input frequencies: In (A) we see the model
neural output, given constant input pressure in the model ear canal; in (B) we show
the model neural phase; in (C) we show the model transfer function magnitude re-
lating the basilar membrane to hair cell displacement, which results from the resonant
tectorial membrane model; and in (D) we see the basilar membrarie impedance mag-
nitude for the resonant tectorial membrane model, which is required when calculating
the basilar membrane velocity using the macromechanical model. For these results
we assumed that the model neural output was proportional to the TM-RL shear
velocity as described in the legend for Fig. 17.
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FIG. 18. This figure illustrates how the response varies as a function of position along the basilar
membrane, for six different input frequencies. Panel A gives the shear velocity; B shows the shear
phase, C shows the basilar membrane to shear transfer function magnitude (this is geflned as the
ratio of the cilia response to the basilar membrane response), and D, the model basilar membrane
impedance magnitude. Note particularly the effect of the resonant tgctorlal rqembrane on the tuning
curve, as shown in (C). The effect of the tectorial membrane in this mo_del is to cha'nge.the quasi-
low-pass basilar membrane transfer function (Fig. 5) into a bandpass filter as seen in Fig. 17.

From Figs. 16 and 17 it is clear that the model does a reasonable, but not perfect,

job of describing the neural data. Note that the resonant tectorial membrane transfer
function (Fig. 18C) has a 20-dB ‘‘sharpening’’ effect on the response for freque.ncws
below the cutoff frequency, which is close to the difference observed by Sellick et

al. (38) as seen in Fig. 13. Our model effort does not at present attempt to account
specifically for the Sellick et al. data.

Neely and Kim’s Negative Resistance Model

A second and alternative approach to account for sharp neural tuning has been
proposed by Neely and Kim (26) and has been worked out in some detail by'Neely
in his Ph.D. thesis (25). This model calls on the concept of negative damping, or
resistance, in the basilar membrane. This model distinguishes itself from the resonant
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FIG. 18. Comparison of neural data (dotted lines) and model results (solid lines) from Neely and
Kim's active basilar membrane model. (a): Threshold tuning curves; (b): slope of the tuning curves;
(c): phase of the response; and (d): group delay of the response. The neural phase data in (c) and
(d) are plotted after removing 1.2-msec delay attributable to acoustic, synaptic, and neural spike
propagation delays. (From ref. 26.)

tectorial membrane models owing to one of its basic assumptions, i.e., the model
assumes that the neural and the basilar membrane responses are identical. Therefore
the original ter Kuile model was used unmodified in Neely’s theory (the tectorial
membrane was assumed to be rigid in the radial direction (26) (Fig. 2). One serious
problem with this model is the lack of a definable relationship between the model
parameters and the cochlear anatomy.

The results of Neely and Kim (26) shown in Fig. 19 are a very impressive match
to high frequency neural tuning curves, both magnitude and phase, where phase data
are available. In general, the higher the characteristic frequency of the neural data
being matched, the better the model fit.

In a recent paper, Neely and Kim (27) join the resonant tectorial membrane model
of Allen (1) with an active source that represents active outer hair cells. This model
gives the best fit to tuning curve data to date for any of the models, if the entire 100
Hz to 30 kHz hearing range is considered. This paper also improves on the earlier
paper (26) by having a definable correspondence between many of the model pa-
rameters and the cochlea anatomy, with the important exception of the active source
pressure.
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The use of a negative resistance is supported by the observations, first made by

] Kemp (15), of emissions from the cochlea.
40
bor® Evoked Echoes and Spontaneous Emissions
Q
174
A : In 1958 Elliott (10) observed that the threshold of hearing was not a smooth function
{ears of frequency, but that it fluctuated in a quasiperiodic manner with a period of a few
] = hundred hertz. Such microstructure could be characteristic of low-level standing
waves attributed to slight mismatches at different positions along the basilar mem-
T brane (17).
—a) Later it was observed by Kemp in 1978 (15, 16) that low-level dispersive reflections
—4 may be found in response to a pulse of sound in the ear canal. The delay involved
approximately corresponds to a round trip travel time along the basilar membrane.
s 4 The reflections are nonlinear in their behavior since they grow at less than a linear
o rate with increasing input pulse level. Because of the nonlinear character of the
1 1 echoes, it will not be easy to model them until the nonlinear properties of the basilar
2 membrane are better understood. -
by = A third somewhat bizarre observation was then made with the finding that narrow-
3 band tones emanate from the human cochlea (16,42). In animals, similar tones have
L8 g been correlated with damage to the cochlea. It would be natural to ask if the mi- <
crostructure in the hearing threshold previously observed correlates to these narrow- 4
band tones, the speculation being that the tones are just biological noise passively
——] | S A R
amplified by the presumed standing waves mentioned above. Such narrow-band
noise would have a Gaussian amplitude distribution, and the amplitude distribution
of the tones seems to be closer to that of a pure tone, which is contrary to the
n Neely and standing-wave model.(6).
ning curves; When these spontaneous emissions were first observed, many researchers were
ta in (c) and quick to conjecture that the cochlea was an active system that occasionally became
RousgsRike unstable (8,16). Hence models that incorporate negative damping, such as Neely’s
(26), are interesting. The use of negative damping in the model serves the function
of sharpening the tuning of the cochlear filters. It also has the capability, in theory,
the model of making the basilar membrane oscillate, thus giving rise to the emissions that were
Therefore observed by Kemp (15).
e tectorial The source of the proposed negative damping is still unknown, but we believe we
ne serious know where to look for it. In 1985 Brownell et al. (7) found that isolated outer hair
the model cells change their length when placed in an electric field. This has led to the spec-
ulation that outer hair cells act as linear motors directly driving the basilar membrane.
sive match The displacement of the linear motors would probably be a function of the outer
phase data hair cell receptor potential, which in turn is modulated by both the position of the
eural data basilar membrane (forming a tight feedback loop) and the efferent neurons that are
connected to the outer hair cells (forming a very slow feedback loop). The details
rane model of this possibility are the topic of present-day research. The work of Liberman and
This model his colleagues gives important constraints on how this system might work. In Fig.
> entire 100 20 we see a figure from Liberman and Dodd (24) that indicates the complex rela-
the earlier tionships between the state of the inner and outer hair cells and the neurally measured
model pa- frequency response. Perhaps an improved understanding of this interaction will lead N |
tive source to the breakthrough that we need in describing the cochlear frequency selectivity

and the nonlinear characteristics of the basilar membrane.
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FIG. 20. Schematic representation of a normal organ of Corti (a) and four different damage states.
Each damaged state is shown with the particular tuning curve abnormality that was found to arise
from radial fiber innervation from such a region. From this figure we see that the tuning of the inner
hair cell is systematically dependent on the nature of the damage. (b): Damage to the inner hair
cells raises the threshold of the unit but does not significantly change the shape of the tuning. (c):
Damage to the first and second rows of outer hair cells enhances the frequency-dependent notch
seen just below 2.0 kHz. We interpret this notch as having the same physics as the model effect
described in Fig. 18C, which results from the resonant tectorial membrane (Fig. 15). The tip is also
missing, which might suggest a loss of basilar membrane gain because of the partial loss of outer
hair cells. Note how this loss is accompanied by a lower threshold in the tail region (below 1.0 kMz).
This could be interpreted as a loss of the cancellation in that frequency region owing to the shifting
of the ““zero" of the resonant tectorial membrane. (d): Inner hair cell loss uniformly increases the
threshold. (e): Total outer hair cell loss results in a hypersensitive tail threshold. This is an extension
of the result from (c). (From ref. 24.)
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